A Scalable Deep Learning Approach for Real‐Time Multivariate Monitoring of Biopharmaceutical Processes With No Prior Product‐Specific History

生物制药 可扩展性 故障检测与隔离 计算机科学 批处理 根本原因 杠杆(统计) 过程(计算) 医药制造业 人工智能 机器学习 数据挖掘 可靠性工程 生物 工程类 生物技术 生物信息学 数据库 执行机构 操作系统 程序设计语言
作者
Nima Sammaknejad,Jessica Lee,Jan Michael Austria,Nadia Duenas,Leila Heiba,G. Sridharan,Jeff Davis,Cenk Ündey
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:122 (9): 2333-2352 被引量:1
标识
DOI:10.1002/bit.29039
摘要

ABSTRACT Real‐time multivariate statistical process monitoring (RT‐MSPM) is essential to monitor health of bio‐pharmaceutical processes and detect anomalies and faults early in the process. RT‐MSPM methods are commonly used to monitor cell culture process operations in biologics drug substance manufacturing. Batch evolution models (BEMs) are among common RT‐MSPM methods. As an alternative to BEMs, it is possible to develop multiple models to monitor different phases of a batch process. If certain statistical properties are satisfied, a multistage algorithm can be leveraged to detect steady state operation of a batch and process the corresponding time‐series in a manner to leverage data from other product recipes to monitor a new product with no prior history. This is specifically useful in modern biopharmaceutical manufacturing facilities, which frequently switch from producing one medicine to another. In this article, a novel real‐time deep learning framework to monitor the health of biopharmaceutical processes with no prior product‐specific history is proposed. Autoencoders (AEs), in conjunction with a multistage real‐time data processing algorithm, are leveraged to detect, prevent and identify the root causes of potential anomalies and faults in cell culture manufacturing processes to produce monoclonal antibodies with no prior history. A novel algorithm for real‐time root cause identification of anomalies is developed to generate real‐time contribution charts for AEs. The performance of the new fault detection and isolation strategy is compared with conventional methods. Given the nonlinear architecture of AEs in comparison to conventional linear methods, AEs consistently provide more robust and stronger evidence for anomalous patterns using a combination of information in residuals and latent space. The proposed framework is successfully tested within a scalable software product for real‐time monitoring of manufacturing cell culture bioreactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
田様应助靳志强采纳,获得10
刚刚
2秒前
3秒前
3秒前
LDDD发布了新的文献求助10
3秒前
jy发布了新的文献求助100
3秒前
健壮问兰发布了新的文献求助10
4秒前
4秒前
啦啦啦发布了新的文献求助10
5秒前
6秒前
6秒前
zhangpeng完成签到,获得积分10
7秒前
7秒前
kkk发布了新的文献求助10
10秒前
鹿飞松发布了新的文献求助10
10秒前
务实水蓝完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助50
12秒前
Pony发布了新的文献求助10
12秒前
12秒前
星空完成签到,获得积分10
14秒前
14秒前
Katherine完成签到,获得积分10
14秒前
完美世界应助肥肥嘟嘟嘟采纳,获得10
14秒前
16秒前
科研通AI6.1应助等待青文采纳,获得10
16秒前
淳于白凝完成签到,获得积分0
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
今后应助啦啦啦采纳,获得10
19秒前
19秒前
21秒前
kkk完成签到,获得积分20
23秒前
23秒前
plff完成签到,获得积分10
24秒前
wgcheng发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5807204
求助须知:如何正确求助?哪些是违规求助? 5860453
关于积分的说明 15520334
捐赠科研通 4931835
什么是DOI,文献DOI怎么找? 2655556
邀请新用户注册赠送积分活动 1602084
关于科研通互助平台的介绍 1557156