已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Scalable Deep Learning Approach for Real‐Time Multivariate Monitoring of Biopharmaceutical Processes With No Prior Product‐Specific History

生物制药 多元统计 可扩展性 产品(数学) 计算机科学 生化工程 工艺工程 人工智能 机器学习 化学 生物 工程类 生物技术 数学 几何学 数据库
作者
Nima Sammaknejad,Jessica Lee,Jan Michael Austria,Nadia Duenas,Leila Heiba,G. Sridharan,Jeff Davis,Cenk Ündey
出处
期刊:Biotechnology and Bioengineering [Wiley]
标识
DOI:10.1002/bit.29039
摘要

Real-time multivariate statistical process monitoring (RT-MSPM) is essential to monitor health of bio-pharmaceutical processes and detect anomalies and faults early in the process. RT-MSPM methods are commonly used to monitor cell culture process operations in biologics drug substance manufacturing. Batch evolution models (BEMs) are among common RT-MSPM methods. As an alternative to BEMs, it is possible to develop multiple models to monitor different phases of a batch process. If certain statistical properties are satisfied, a multistage algorithm can be leveraged to detect steady state operation of a batch and process the corresponding time-series in a manner to leverage data from other product recipes to monitor a new product with no prior history. This is specifically useful in modern biopharmaceutical manufacturing facilities, which frequently switch from producing one medicine to another. In this article, a novel real-time deep learning framework to monitor the health of biopharmaceutical processes with no prior product-specific history is proposed. Autoencoders (AEs), in conjunction with a multistage real-time data processing algorithm, are leveraged to detect, prevent and identify the root causes of potential anomalies and faults in cell culture manufacturing processes to produce monoclonal antibodies with no prior history. A novel algorithm for real-time root cause identification of anomalies is developed to generate real-time contribution charts for AEs. The performance of the new fault detection and isolation strategy is compared with conventional methods. Given the nonlinear architecture of AEs in comparison to conventional linear methods, AEs consistently provide more robust and stronger evidence for anomalous patterns using a combination of information in residuals and latent space. The proposed framework is successfully tested within a scalable software product for real-time monitoring of manufacturing cell culture bioreactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亦hcy发布了新的文献求助20
1秒前
William_l_c完成签到,获得积分10
3秒前
希望天下0贩的0应助caicai采纳,获得10
3秒前
俊逸芸遥发布了新的文献求助10
4秒前
ofa完成签到,获得积分10
4秒前
GingerF应助可靠的怜珊采纳,获得60
7秒前
诩阽发布了新的文献求助10
7秒前
7秒前
一粟完成签到 ,获得积分10
8秒前
852应助风华笔墨采纳,获得10
8秒前
Simon完成签到,获得积分10
8秒前
10秒前
11秒前
不喜发布了新的文献求助10
16秒前
俊逸芸遥完成签到,获得积分10
17秒前
Lucas应助成太采纳,获得10
19秒前
董方圆完成签到,获得积分10
21秒前
22秒前
小狗不是抠脚兵完成签到 ,获得积分10
22秒前
牛牛完成签到 ,获得积分10
22秒前
23秒前
风华笔墨发布了新的文献求助10
27秒前
大方听白完成签到 ,获得积分10
31秒前
32秒前
Jere发布了新的文献求助30
34秒前
1MENINA1完成签到 ,获得积分10
37秒前
青青完成签到 ,获得积分10
37秒前
gwkki完成签到 ,获得积分10
38秒前
41秒前
41秒前
43秒前
45秒前
酷波er应助风中安梦采纳,获得10
46秒前
忧虑的勒发布了新的文献求助10
48秒前
华仔应助keke采纳,获得10
49秒前
o_0发布了新的文献求助10
50秒前
小唐发布了新的文献求助50
50秒前
51秒前
自由自在发布了新的文献求助10
51秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356411
求助须知:如何正确求助?哪些是违规求助? 4488209
关于积分的说明 13971794
捐赠科研通 4389030
什么是DOI,文献DOI怎么找? 2411357
邀请新用户注册赠送积分活动 1403907
关于科研通互助平台的介绍 1377771