Transfer learning based generalized framework for state of health estimation of Li-ion cells

计算机科学 电池(电) 健康状况 学习迁移 电压 人工神经网络 电压降 数据挖掘 人工智能 机器学习 钥匙(锁) 工程类 功率(物理) 电气工程 物理 量子力学 计算机安全
作者
Subhasmita Sahoo,Krishnan S. Hariharan,Samarth Agarwal,Subramanian B. Swernath,Roshan Bharti,Seong‐Ho Han,Sang‐Heon Lee
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:19
标识
DOI:10.1038/s41598-022-16692-4
摘要

Estimating the state of health (SOH) of batteries powering electronic devices in real-time while in use is a necessity. The applicability of most of the existing methods is limited to the datasets that are used to train the models. In this work, we propose a generic method for SOH estimation with much wider applicability. The key problem is the identification of the right feature set which is derived from measurable voltage signals. In this work, relative rise in voltage drop across cell resistance with aging has been used as the feature. A base artificial neural network (ANN) model has been used to map the generic relation between voltage and SOH. The base ANN model has been trained using limited battery data. Blind testing has been done on long cycle in-house data and publicly available datasets. In-house data included both laboratory and on-device data generated using various charge profiles. Transfer learning has been used for public datasets as those batteries have different physical dimensions and cell chemistry. The mean absolute error in SOH estimation is well within 2% for all test cases. The model is robust across scenarios such as cell variability, charge profile difference, and limited variation in temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe完成签到,获得积分20
刚刚
刚刚
1秒前
jian完成签到,获得积分10
1秒前
2秒前
浅墨发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
小二郎应助飞白采纳,获得10
5秒前
秋不落棠发布了新的文献求助10
5秒前
6秒前
yana完成签到,获得积分10
6秒前
7秒前
ABU完成签到,获得积分10
7秒前
7秒前
7秒前
赘婿应助yhhhhh采纳,获得10
7秒前
NexusExplorer应助yhhhhh采纳,获得10
7秒前
小黄完成签到,获得积分20
7秒前
1111完成签到 ,获得积分10
8秒前
mascot0111完成签到,获得积分10
8秒前
看一千次海完成签到,获得积分10
8秒前
Lemuel发布了新的文献求助10
9秒前
科目三应助徐rl采纳,获得10
9秒前
9秒前
留胡子的白风完成签到,获得积分10
10秒前
穿书之成为科研大佬完成签到,获得积分10
10秒前
Yue发布了新的文献求助10
10秒前
11秒前
123456完成签到,获得积分10
11秒前
YiYing_W发布了新的文献求助30
11秒前
11秒前
朝颜发布了新的文献求助10
12秒前
郭郭郭发布了新的文献求助10
12秒前
1111完成签到,获得积分10
14秒前
Ll完成签到,获得积分10
14秒前
zho发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871