Extracting Metal‐Organic Frameworks Data from the Cambridge Structural Database

星团(航天器) 金属有机骨架 数据库 多样性(控制论) 纳米技术 配体(生物化学) 晶体结构 计算机科学 化学 材料科学 结晶学 人工智能 有机化学 受体 吸附 生物化学 程序设计语言
作者
Aurelia Li,Rocio Bueno‐Perez,David Fairen‐Jiménez
标识
DOI:10.1002/9781119819783.ch8
摘要

Most of the synthesized crystal structures accompanying academic publications are deposited in the Cambridge Structural Database (CSD), curated by the Cambridge Crystallographic Data Centre (CCDC) [1]. This database contains data of over 1 million experimentally-obtained crystal structures resulting from X-ray diffraction analyses. Among this myriad of crystalline data are, in particular, those of metal-organic frameworks (MOFs). Over the last two decades, their customizability, combined with the variety of possible cluster-ligand combinations and their relatively straightforward syntheses, has spurred the creation of a fast-growing number of structures covering a range of pore sizes, geometries, internal surface areas, and pore volumes. Our questions include how many MOFs have been synthesized so far? How to specifically extract MOFs from the CSD? What are the structure–property landscapes of these existing MOFs? This chapter answers these questions by presenting the construction of the CSD MOF subset, the world's first automatically-updated dataset of MOFs composed of (as of 2020) nearly 100,000 structures [2]. The CSD tools used in the process are explained and further exploited to demonstrate possible targeted, dynamic searches of sub-classes of MOFs, based on their cluster-ligand linkages, surface functionalities, framework dimensionalities, or chiralities [3]. The extracted structural information is particularly valuable when combined with application-specific descriptors, usually obtained with high-throughput molecular simulations. To ensure the data are suitably clean for this process, we also present ways of removing undesired solvents and adding missing hydrogen atoms [2,4]. The resulting structure–property maps are the primary tools for revealing trends and identifying the best candidates for a given application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎日新完成签到,获得积分10
刚刚
刚刚
mzm完成签到,获得积分10
1秒前
大模型应助轻松的小海豚采纳,获得10
1秒前
wenhuacc发布了新的文献求助10
4秒前
4秒前
4秒前
YCG完成签到 ,获得积分10
5秒前
越啊完成签到,获得积分10
5秒前
小奇曲饼完成签到 ,获得积分10
6秒前
ding应助27采纳,获得30
7秒前
8秒前
8秒前
哈哈王子发布了新的文献求助10
9秒前
华风发布了新的文献求助10
10秒前
悲凉的新筠完成签到,获得积分10
12秒前
Pony发布了新的文献求助10
14秒前
cindyyunjie发布了新的文献求助10
15秒前
刘方欣发布了新的文献求助10
16秒前
wenhuacc完成签到,获得积分10
19秒前
传奇3应助小奇曲饼采纳,获得10
19秒前
研友_VZG7GZ应助1234学术采纳,获得10
23秒前
23秒前
24秒前
活泼水桃完成签到,获得积分10
25秒前
脑洞疼应助子卿采纳,获得10
27秒前
28秒前
wyling应助刘方欣采纳,获得10
28秒前
杨杨杨完成签到,获得积分10
29秒前
小垃圾发布了新的文献求助10
29秒前
烟花应助华风采纳,获得10
31秒前
1234学术完成签到,获得积分10
32秒前
32秒前
ri_290发布了新的文献求助10
33秒前
liuzhanyu发布了新的文献求助30
35秒前
bkagyin应助young_joint采纳,获得10
36秒前
36秒前
CodeCraft应助高熵君采纳,获得10
38秒前
核桃发布了新的文献求助10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4778615
求助须知:如何正确求助?哪些是违规求助? 4109325
关于积分的说明 12712380
捐赠科研通 3831496
什么是DOI,文献DOI怎么找? 2113416
邀请新用户注册赠送积分活动 1136844
关于科研通互助平台的介绍 1021075