节点(物理)
计算机科学
薄脆饼
扫描电子显微镜
过程(计算)
人工智能
嵌入式系统
模式识别(心理学)
材料科学
光电子学
操作系统
声学
物理
复合材料
作者
Jens Timo Neumann,Abhilash Srikantha,Philipp Hüthwohl,Keumsil Lee,James William B.,Thomas Korb,E. Foca,Tomasz Garbowski,Daniel Boecker,Sayantan Das,Sandip Halder
出处
期刊:Journal of micro/nanopatterning, materials, and metrology
[SPIE - International Society for Optical Engineering]
日期:2023-03-01
卷期号:22 (02)
标识
DOI:10.1117/1.jmm.22.2.021009
摘要
We present an automated application for defect detection and classification from ZEISS multibeam scanning electron microscope (MultiSEM®) images, based on machine learning (ML) technology. We acquire MultiSEM images of a semiconductor wafer suited for process window characterization at the imec iN5 logic node and use a dedicated application to train ML models for defect detection and classification. We show the user flow for training and execution, and the resulting capture and nuisance rates. Due to straightforward parallelization, the application is designed for the large amounts of data generated rapidly by the MultiSEM.
科研通智能强力驱动
Strongly Powered by AbleSci AI