Prediction of liquid holdup and pressure drop in gas-liquid two-phase flow based on integrating mechanism analysis and data mining

压力降 两相流 机制(生物学) 流量(数学) 机械 液相 石油工程 材料科学 热力学 地质学 物理 量子力学
作者
Xinru Zhang,Lei Hou,Zuoliang Zhu,Muqingyun Yang,Zhanzhou Hu,Jiaquan Liu
标识
DOI:10.1016/j.geoen.2024.212971
摘要

Gas-liquid two-phase flow widely exists in gas transportation pipelines, and the prediction of liquid holdup and pressure drop is crucial for the safety and efficiency of pipelines. Due to the complexity of multiphase flow, the mechanism model is difficult to accurately and quickly predict the liquid holdup and pressure drop. Machine learning (ML) models have high accuracy, but the lack of physical meaning limits their application. In order to fully leverage the advantages of mechanism models and machine learning models, a new method using physically guided neural networks (PGNN) to predict pressure drop and liquid holdup is proposed. Based on the flow mechanism analysis of different flow patterns, the structure of PGNN is designed according to the calculation process of the mechanism model. Key physical intermediate variables such as shear stress and friction coefficient are added to the model as neurons. Physical constraints in gas-liquid two-phase flow are added to the loss function to give physical significance to neurons. 1390 publicly available experimental data are collected for model training and testing. Due to the uneven distribution of experimental data, the local outlier factor (LOF) algorithm is used to screen outlier of data. By comparing PGNN with other ML models, empirical models, and semi empirical models, it is proved that integrating mechanism into the ML model improves the accuracy and physical consistency. This research presents a fresh outlook on the investigation of the flow dynamics in gas-liquid two-phase systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助王荣桃采纳,获得10
1秒前
luo完成签到,获得积分10
2秒前
ding应助xxxxx采纳,获得10
3秒前
Orange应助瀼瀼采纳,获得10
3秒前
4秒前
4秒前
Lelym发布了新的文献求助10
5秒前
王安琪发布了新的文献求助20
5秒前
西瓜发布了新的文献求助10
8秒前
jia发布了新的文献求助10
8秒前
jiajiajai完成签到,获得积分10
10秒前
12秒前
笑点低千雁完成签到,获得积分10
12秒前
14秒前
nater4ver完成签到,获得积分10
16秒前
wander发布了新的文献求助10
16秒前
19秒前
幸福大碗完成签到,获得积分10
19秒前
大椒完成签到 ,获得积分10
21秒前
22秒前
90发布了新的文献求助10
23秒前
大个应助西瓜采纳,获得10
26秒前
nater3ver完成签到,获得积分10
26秒前
CCC完成签到,获得积分10
26秒前
27秒前
manan完成签到,获得积分10
28秒前
绝尘发布了新的文献求助10
28秒前
29秒前
飞快的羊青完成签到,获得积分10
29秒前
小豆发布了新的文献求助10
33秒前
nater2ver完成签到,获得积分10
34秒前
34秒前
baiyi完成签到 ,获得积分10
35秒前
yuliuism完成签到,获得积分10
35秒前
冯先森ya发布了新的文献求助10
36秒前
37秒前
啦啊啦啦啦应助杨东旭采纳,获得20
38秒前
ll200207完成签到,获得积分10
38秒前
狂野砖头完成签到 ,获得积分10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789438
求助须知:如何正确求助?哪些是违规求助? 3334371
关于积分的说明 10269940
捐赠科研通 3050864
什么是DOI,文献DOI怎么找? 1674189
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732