Reduced IFNL1 and/or IFNL2, but not IFNL3 is associated with worse outcome in patients with COVID-19

免疫学 医学 免疫系统 细胞激素风暴 疾病 细胞因子 2019年冠状病毒病(COVID-19) 内科学 传染病(医学专业)
作者
Elena Woods,Adriana Mena,Sophie Sierpinska,Emily Carr,Richard Hagan,John Crowley,Colm Bergin,David Clark,Caroline Brophy,Derek Macallan,Clair M. Gardiner
出处
期刊:Clinical and Experimental Immunology [Oxford University Press]
标识
DOI:10.1093/cei/uxae047
摘要

Abstract The recent pandemic was caused by the emergence of a new human pathogen, SARS-CoV-2. While the rapid development of many vaccines provided an end to the immediate crisis, there remains an urgent need to understand more about this new virus and what constitutes a beneficial immune response in terms of successful resolution of infection. Indeed, this is key for development of vaccines that provide long lasting protective immunity. The interferon lambda (IFNL) family of cytokines are produced early in response to infection and are generally considered anti-viral and beneficial. However, data regarding production of IFNL cytokines in COVID-19 patients is highly variable, and generally from underpowered studies. In this study, we measured all three IFNL1, IFNL2 and IFNL3 cytokines in plasma from a well characterised, large COVID-19 cohort (n=399) that included good representation from patients with a more indolent disease progression, and hence a beneficial immune response. While all three cytokines were produced, they differed in both the frequency of expression in patients, and the levels produced. IFNL3 was produced in almost all patients but neither protein level nor IFNL3/IFNL4 SNPs were associated with clinical outcome. In contrast, both IFNL1 and IFNL2 levels were significantly lower, or absent, in plasma of patients that had a more severe disease outcome. These data are consistent with the concept that early IFNL1 and IFNL2 cytokine production is protective against SARS-CoV-2 infection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文龙发布了新的文献求助10
刚刚
米米完成签到,获得积分10
刚刚
Ava应助W~舞采纳,获得10
1秒前
纪靖雁发布了新的文献求助10
1秒前
lcl发布了新的文献求助10
3秒前
米米发布了新的文献求助10
3秒前
小心薛了你完成签到,获得积分10
3秒前
朱可芯发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
斯文土豆关注了科研通微信公众号
5秒前
6秒前
周周完成签到,获得积分10
7秒前
amerla完成签到,获得积分20
7秒前
ss完成签到,获得积分10
8秒前
传奇3应助xzn1123采纳,获得10
8秒前
娟儿发布了新的文献求助10
8秒前
WJ发布了新的文献求助10
8秒前
lalala发布了新的文献求助10
9秒前
9秒前
柠檬发布了新的文献求助10
9秒前
10秒前
10秒前
IC小毛孩完成签到 ,获得积分10
11秒前
13秒前
13秒前
清水胖子发布了新的文献求助10
13秒前
邪恶青年完成签到,获得积分10
13秒前
心落失发布了新的文献求助10
14秒前
迷路的墨镜完成签到,获得积分10
15秒前
19秒前
19秒前
CodeCraft应助WJ采纳,获得10
20秒前
斯文土豆发布了新的文献求助10
20秒前
华仔应助岁月静好采纳,获得10
20秒前
JY完成签到,获得积分10
22秒前
顾矜应助安琦采纳,获得10
23秒前
火炬计划发布了新的文献求助10
25秒前
科研通AI5应助清水胖子采纳,获得30
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836201
求助须知:如何正确求助?哪些是违规求助? 3378568
关于积分的说明 10504924
捐赠科研通 3098152
什么是DOI,文献DOI怎么找? 1706298
邀请新用户注册赠送积分活动 820954
科研通“疑难数据库(出版商)”最低求助积分说明 772348