TF-TCN: A time-frequency combined gas concentration prediction model for E-nose data

电子鼻 计算机科学 环境科学 人工智能
作者
Xu Ma,Fan Wu,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:376: 115654-115654 被引量:4
标识
DOI:10.1016/j.sna.2024.115654
摘要

Gas concentration prediction is one of the main tasks in the field of electronic nose (E-nose). Currently, most of the models based on recurrent and convolutional architectures, such as long short-term memory (LSTM) and temporal convolutional network (TCN), focus only on the time domain (TD) information, which may lead to the difficulty in capturing the features and the omission of information extraction of long-term sequences in E-nose data. Therefore, a TCN model combining time-frequency (TF) enhanced network called TF-TCN is proposed in this work. Specifically, a frequency domain (FD) module, which transfers the TD information to the FD by the fast Fourier transform (FFT), is added into the traditional TCN to perform the feature extraction with the TCN basic blocks in multiple scales. Meanwhile, Gaussian error linear unit (GELU) replaces the rectified linear unit (RELU) to utilize the nonlinearity, which weights inputs by their values rather than gates inputs by their signs as in RELU. Based on two single gas dataset, sufficient experiments demonstrate the advantages of TF-TCN from different perspectives. Compared with the comparative models, TF-TCN reduces the root mean square error (RMSE) and the mean absolute error (MAE) on the two single gas datasets by at least 23.8% and 36.1% respectively. In addition, experiments based on a mixed gas dataset demonstrate the outstanding prediction abilities of TF-TCN even under disturbed conditions. As a result, our work may provide a novel way of thinking about the extraction of information from E-nose data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dilli发布了新的文献求助10
2秒前
脑洞疼应助阿星捌采纳,获得10
2秒前
2秒前
浮浮世世发布了新的文献求助10
4秒前
崔大胖发布了新的文献求助10
6秒前
puyu完成签到,获得积分10
7秒前
潇洒怀曼完成签到,获得积分10
7秒前
今后应助寒冷晓凡采纳,获得10
8秒前
Jasper应助Mister_CHEN采纳,获得10
8秒前
泡泡完成签到,获得积分20
9秒前
9秒前
10秒前
南宫初柒完成签到 ,获得积分10
10秒前
李小麦给李小麦的求助进行了留言
10秒前
11秒前
LIGANG1111完成签到 ,获得积分10
11秒前
12秒前
Jasper应助无心的不可采纳,获得10
13秒前
偷猪剑客完成签到,获得积分20
15秒前
雷锋发布了新的文献求助10
16秒前
偷猪剑客发布了新的文献求助30
17秒前
往事发布了新的文献求助10
18秒前
18秒前
19秒前
爆米花应助yqc采纳,获得10
20秒前
隔壁海绵宝宝完成签到,获得积分10
22秒前
sandra完成签到,获得积分10
23秒前
慕恩呐发布了新的文献求助30
23秒前
23秒前
23秒前
勤奋发卡完成签到,获得积分10
24秒前
追风发布了新的文献求助10
25秒前
26秒前
ln发布了新的文献求助10
26秒前
英俊的铭应助777采纳,获得10
27秒前
早睡早起发布了新的文献求助10
28秒前
FashionBoy应助善良语雪采纳,获得10
29秒前
阿星捌发布了新的文献求助10
31秒前
赘婿应助科研通管家采纳,获得10
32秒前
小马甲应助科研通管家采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Research on AGV task assignment and path planning in robotic mobile fulfilment systems 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3937078
求助须知:如何正确求助?哪些是违规求助? 3482704
关于积分的说明 11019938
捐赠科研通 3212675
什么是DOI,文献DOI怎么找? 1775710
邀请新用户注册赠送积分活动 861884
科研通“疑难数据库(出版商)”最低求助积分说明 798220