现场可编程门阵列
正交性
特征向量
背景(考古学)
浮点型
矩阵的特征分解
钥匙(锁)
计算机科学
门阵列
科迪奇
分解
信号处理
雅可比特征值算法
算法
信号(编程语言)
数字信号处理
计算机工程
计算机硬件
数学
生物
物理
几何学
量子力学
古生物学
计算机安全
程序设计语言
生态学
作者
Xiaowei Zhang,Di Yan,Lei Zuo,Ming Li,Jianxin Guo
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2022-11-14
卷期号:72 (5): 5782-5797
被引量:4
标识
DOI:10.1109/tvt.2022.3221915
摘要
For the direction of arrival (DOA) in array signal processing, eigenvalue decomposition (EVD) is one key issue in hardware implementation of the multiple signal classification (MUSIC) algorithm. Therefore, we introduce the look-ahead sim- plified one-sided Jacobi's method to efficiently decompose those symmetric matrices in this article and prove that the new method has the best orthogonality of eigenvector and locates eigenvectors closest to the true solution in theory. Both the numerical perform- ance and real-time are important in engineering, so we present the novel flexible hardware architecture in single floating point arithmetic for EVD on field-programmable gate arrays (FPGAs). Finally, the simulated and raw data are used to investigate the performance of some different approaches in the context of both the EVD and MUSIC algorithm. The experimental results show that our proposed method has the best performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI