Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

计算机科学 瓶颈 变压器 数据挖掘 人工智能 机器学习 工业工程 工程类 电气工程 嵌入式系统 电压
作者
Haixu Wu,Jiehui Xu,Jianmin Wang,Mingsheng Long
出处
期刊:Cornell University - arXiv 被引量:968
标识
DOI:10.48550/arxiv.2106.13008
摘要

Extending the forecasting time is a critical demand for real applications, such as extreme weather early warning and long-term energy consumption planning. This paper studies the long-term forecasting problem of time series. Prior Transformer-based models adopt various self-attention mechanisms to discover the long-range dependencies. However, intricate temporal patterns of the long-term future prohibit the model from finding reliable dependencies. Also, Transformers have to adopt the sparse versions of point-wise self-attentions for long series efficiency, resulting in the information utilization bottleneck. Going beyond Transformers, we design Autoformer as a novel decomposition architecture with an Auto-Correlation mechanism. We break with the pre-processing convention of series decomposition and renovate it as a basic inner block of deep models. This design empowers Autoformer with progressive decomposition capacities for complex time series. Further, inspired by the stochastic process theory, we design the Auto-Correlation mechanism based on the series periodicity, which conducts the dependencies discovery and representation aggregation at the sub-series level. Auto-Correlation outperforms self-attention in both efficiency and accuracy. In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a 38% relative improvement on six benchmarks, covering five practical applications: energy, traffic, economics, weather and disease. Code is available at this repository: \url{https://github.com/thuml/Autoformer}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Night完成签到,获得积分10
1秒前
活泼的夏旋完成签到 ,获得积分10
1秒前
科研通AI5应助AquaR采纳,获得10
2秒前
良辰应助一汪采纳,获得10
3秒前
wanci应助guozizi采纳,获得10
3秒前
YCW发布了新的文献求助10
3秒前
李健应助cm采纳,获得10
5秒前
daytek完成签到,获得积分10
5秒前
铅笔发布了新的文献求助10
5秒前
自然垣完成签到,获得积分20
5秒前
5秒前
8秒前
青石发布了新的文献求助10
8秒前
9秒前
清风明月完成签到,获得积分10
15秒前
WeihaoLuo完成签到,获得积分10
15秒前
犹豫寒云发布了新的文献求助10
16秒前
16秒前
captain完成签到,获得积分10
17秒前
上善若水完成签到 ,获得积分10
17秒前
Sue完成签到 ,获得积分10
17秒前
17秒前
李超完成签到,获得积分10
18秒前
太叔惜梦发布了新的文献求助10
20秒前
22秒前
lilacs应助jimmyhui采纳,获得10
24秒前
24秒前
李爱国应助feng_qi001采纳,获得10
25秒前
NexusExplorer应助卡布叻采纳,获得10
26秒前
27秒前
魏煦给魏煦的求助进行了留言
27秒前
lenon完成签到,获得积分10
29秒前
29秒前
7123发布了新的文献求助10
29秒前
是风动完成签到 ,获得积分10
30秒前
Hello应助耶耶采纳,获得10
31秒前
zhaoming发布了新的文献求助10
31秒前
121发布了新的文献求助10
32秒前
feng_qi001完成签到,获得积分10
33秒前
南瓜豆腐完成签到 ,获得积分10
34秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Superiority of opioid free anesthesia with regional block over opioid anesthesia with regional block in the quality of recovery after retroperitoneiscopic renal surgery: a randomized controlled trial 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826953
求助须知:如何正确求助?哪些是违规求助? 3369242
关于积分的说明 10454988
捐赠科研通 3088858
什么是DOI,文献DOI怎么找? 1699491
邀请新用户注册赠送积分活动 817343
科研通“疑难数据库(出版商)”最低求助积分说明 770158