Heterogeneous Temporal Graph Neural Network

计算机科学 图形 异构网络 关系(数据库) 理论计算机科学 代表(政治) 背景(考古学) 人工神经网络 特征学习 人工智能 数据挖掘 地理 无线 政治 电信 政治学 法学 考古 无线网络
作者
Yujie Fan,Mingxuan Ju,Chuxu Zhang,Yanfang Ye
出处
期刊:Society for Industrial and Applied Mathematics eBooks [Society for Industrial and Applied Mathematics]
卷期号:: 657-665 被引量:38
标识
DOI:10.1137/1.9781611977172.74
摘要

Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 SIAM International Conference on Data Mining (SDM)Heterogeneous Temporal Graph Neural NetworkYujie Fan, Mingxuan Ju, Chuxu Zhang, and Yanfang YeYujie Fan, Mingxuan Ju, Chuxu Zhang, and Yanfang Yepp.657 - 665Chapter DOI:https://doi.org/10.1137/1.9781611977172.74PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Graph neural networks (GNNs) have been broadly studied on dynamic graphs for their representation learning, majority of which focus on graphs with homogeneous structures in the spatial domain. However, many real-world graphs - i.e., heterogeneous temporal graphs (HTGs) - evolve dynamically in the context of heterogeneous graph structures. The dynamics associated with heterogeneity have posed new challenges for HTG representation learning. To solve this problem, in this paper, we propose heterogeneous temporal graph neural network (HTGNN) to integrate both spatial and temporal dependencies while preserving the heterogeneity to learn node representations over HTGs. Specifically, in each layer of HTGNN, we propose a hierarchical aggregation mechanism, including intra-relation, inter-relation, and across-time aggregations, to jointly model heterogeneous spatial dependencies and temporal dimensions. To retain the heterogeneity, intra-relation aggregation is first performed over each slice of HTG to attentively aggregate information of neighbors with the same type of relation, and then intra-relation aggregation is exploited to gather information over different types of relations; to handle temporal dependencies, across-time aggregation is conducted to exchange information across different graph slices over the HTG. The proposed HTGNN is a holistic framework tailored heterogeneity with evolution in time and space for HTG representation learning. Extensive experiments are conducted on the HTGs built from different real-world datasets and promising results demonstrate the outstanding performance of HTGNN by comparison with state-of-the-art baselines. Our built HTGs and code have been made publicly accessible at: https://github.com/YesLab-Code/HTGNN. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-717-2 https://doi.org/10.1137/1.9781611977172Book Series Name:ProceedingsBook Code:PRDT22Book Pages:1-737

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
船到桥头自然直完成签到 ,获得积分10
4秒前
小分队发布了新的文献求助10
5秒前
Owen应助张张采纳,获得10
7秒前
范特西发布了新的文献求助10
7秒前
jiang完成签到,获得积分10
7秒前
loogn7发布了新的文献求助10
8秒前
小二郎应助姜圆采纳,获得10
9秒前
李子敬发布了新的文献求助30
9秒前
10秒前
小灰灰发布了新的文献求助10
11秒前
fcsafc发布了新的文献求助30
11秒前
12秒前
琉璃完成签到 ,获得积分10
14秒前
呆呆完成签到,获得积分10
15秒前
reece完成签到 ,获得积分10
15秒前
xm发布了新的文献求助10
16秒前
如冬完成签到,获得积分10
16秒前
16秒前
wanci应助zn315315采纳,获得10
16秒前
大猫不吃鱼完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
獭獭完成签到,获得积分20
18秒前
19秒前
獭獭发布了新的文献求助30
21秒前
耳冉完成签到 ,获得积分10
22秒前
乐乐应助月亮与六便士采纳,获得10
24秒前
量子星尘发布了新的文献求助10
26秒前
xiuxiu125完成签到,获得积分10
29秒前
29秒前
科研通AI2S应助Tsuki采纳,获得10
31秒前
31秒前
32秒前
小北发布了新的文献求助10
33秒前
33秒前
luxx发布了新的文献求助20
33秒前
35秒前
FashionBoy应助海封采纳,获得10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5678262
求助须知:如何正确求助?哪些是违规求助? 4981074
关于积分的说明 15164026
捐赠科研通 4838238
什么是DOI,文献DOI怎么找? 2592262
邀请新用户注册赠送积分活动 1545599
关于科研通互助平台的介绍 1503768