吸附
化学
硼氢化
分子
水溶液
Atom(片上系统)
离子
氢
氢原子
无机化学
水解
金属
催化作用
硼氢化钠
氢化物
水溶液中的金属离子
物理化学
有机化学
烷基
嵌入式系统
计算机科学
作者
Basil Raju Karimadom,Dan Meyerstein,Haya Kornweitz
摘要
The hydrolysis of borohydride on the Ag(111) surface is explored theoretically to obtain the in-depth reaction mechanism. Many heterogeneously catalyzed reactions like this involve the adsorption of charged species on metals. DFT calculations of charged systems, with periodic boundaries, face serious problems, concerning convergence and reliability of the results. To study the heterogeneously catalyzed reactions, a simple method to calculate the adsorption energy of charged systems in metallic periodic cells is proposed. In this method, a counter ion is placed at a non-interactive distance, in an aqueous medium, so that the calculated system is neutral. Bader analysis is used to validate that the calculated couple is charged correctly. Adsorption energies of F-, Cl-, Br-, OH-, BH4-, ClO4- and H- ions on the Ag(111) surface in an aqueous medium were determined using Na+ and K+ as counter ions, to evaluate the performance of this method. The adsorption of the divalent ions S2-, Se2- and SO42- on different surfaces was studied as well. Then this method was used to explore the hydrolysis of BH4- ions, which have a high theoretical hydrogen storage capacity, on the Ag(111) surface. The results point out that during the catalytic hydrolysis only one hydrogen atom from borohydride is transferred to the surface. In the first step one hydrogen atom from BH4- is transferred to the silver surface; this H atom reacts with a hydrogen atom that is released from an adsorbed water molecule; in addition, a hydrogen molecule is released in the second step (one atom from *BH4- and one from *H2O). Thus, the mechanisms of the catalyzed reductions by BH4- and the hydrogen evolution reactions must be reconsidered.
科研通智能强力驱动
Strongly Powered by AbleSci AI