髓鞘
磁共振成像
指纹(计算)
体内
成像体模
核磁共振
抗磁性
多发性硬化
体素
松弛法
神经科学
放松(心理学)
生物医学工程
化学
病理
计算机科学
人工智能
生物
核医学
医学
物理
放射科
中枢神经系统
生物技术
自旋回波
量子力学
磁场
免疫学
作者
Hyeong‐Geol Shin,Jingu Lee,Young Hyun Yun,Seong Ho Yoo,Jinhee Jang,Se‐Hong Oh,Yoonho Nam,Sehoon Jung,Sunhye Kim,Masaki Fukunaga,Woojun Kim,Hyung Jin Choi,Jongho Lee
出处
期刊:NeuroImage
[Elsevier]
日期:2021-07-06
卷期号:240: 118371-118371
被引量:116
标识
DOI:10.1016/j.neuroimage.2021.118371
摘要
Obtaining a histological fingerprint from the in-vivo brain has been a long-standing target of magnetic resonance imaging (MRI). In particular, non-invasive imaging of iron and myelin, which are involved in normal brain functions and are histopathological hallmarks in neurodegenerative diseases, has practical utilities in neuroscience and medicine. Here, we propose a biophysical model that describes the individual contribution of paramagnetic (e.g., iron) and diamagnetic (e.g., myelin) susceptibility sources to the frequency shift and transverse relaxation of MRI signals. Using this model, we develop a method, χ-separation, that generates the voxel-wise distributions of the two sources. The method is validated using computer simulation and phantom experiments, and applied to ex-vivo and in-vivo brains. The results delineate the well-known histological features of iron and myelin in the specimen, healthy volunteers, and multiple sclerosis patients. This new technology may serve as a practical tool for exploring the microstructural information of the brain.
科研通智能强力驱动
Strongly Powered by AbleSci AI