Deep learning‐based scheme to diagnose Parkinson's disease

计算机科学 人工智能 模式识别(心理学) 接收机工作特性 卷积神经网络 深度学习 混淆矩阵 磁共振成像 机器学习 医学 放射科
作者
Tarjni Vyas,Raj Kumar Yadav,Chitra Solanki,Rutvi Darji,Shivani Desai,Sudeep Tanwar
出处
期刊:Expert Systems [Wiley]
卷期号:39 (3) 被引量:51
标识
DOI:10.1111/exsy.12739
摘要

Abstract Parkinson's disease (PD) is a neurological disorder of the central nervous system that causes difficulty in movement, often including tremors and rigidity. Early detection of PD can prevent symptoms up to a certain age and increase life expectancy. For this purpose, we have used brain images from magnetic resonance imaging (MRI) technique. A deeper level of feature detection in MRI can identify biomarkers that can be used to know how the disease spreads, leading to a cure in the future. With these motives, we have presented two novel approaches using deep learning (DL) techniques. 2D and 3D convolution neural networks (CNN) are used, which are trained on MRI scans in the axial plane. The dataset was constructed using images from Parkinson's progression markers initiative (PPMI). The four pre‐processing techniques used in this article are bias field correction, histogram matching, Z ‐score normalization, and image resizing. Pre‐processing techniques were essential inaccurate training models. Every class prediction done by the model would have taken multiple features into account across multiple layers of the brain and not relied on a single or few important features, making DL a powerful concept. A total of 318 MRI scans were used to train and test a 2D CNN and a 3D CNN model. We have compared the models' results using different evaluation parameters such as accuracy, loss, confusion matrix, receiver operating characteristic (ROC) curve, and precision‐recall (PR) curve. The 3D model learned key features from the data and was able to classify the test data with 88.9% accuracy with 0.86 area under curve (AUC). In contrast, the 2D model achieved a mediocre accuracy of 72.22% with 0.50 AUC. This shows that the 3D model is more accurate and reliable than the 2D model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22完成签到,获得积分10
刚刚
leeoqx完成签到,获得积分10
1秒前
三跳完成签到 ,获得积分10
2秒前
丁鹏笑完成签到 ,获得积分0
2秒前
4秒前
直率笑槐完成签到,获得积分20
5秒前
Akim应助sniffgo采纳,获得10
7秒前
勤劳语山完成签到,获得积分10
8秒前
jinzhao完成签到 ,获得积分10
10秒前
10秒前
12秒前
14秒前
兔子发布了新的文献求助10
18秒前
婷123完成签到 ,获得积分10
18秒前
直率笑槐关注了科研通微信公众号
18秒前
怡然紫山完成签到,获得积分10
22秒前
希望天下0贩的0应助yuexu采纳,获得50
23秒前
粗犷的灵松完成签到,获得积分10
24秒前
科研通AI6应助强健的宛儿采纳,获得10
24秒前
五音不全汪完成签到 ,获得积分10
26秒前
汉堡包应助初余采纳,获得10
27秒前
兔子发布了新的文献求助10
29秒前
34秒前
CodeCraft应助泰钽采纳,获得10
36秒前
qq完成签到 ,获得积分10
40秒前
LUMOS发布了新的文献求助10
41秒前
42秒前
老阎应助tuanheqi采纳,获得30
42秒前
兔子发布了新的文献求助10
45秒前
研友_VZG7GZ应助淡墨花笺采纳,获得10
45秒前
45秒前
leeoqx发布了新的文献求助10
45秒前
47秒前
科研通AI5应助帅气男孩采纳,获得10
47秒前
溪影发布了新的文献求助10
49秒前
49秒前
Hanna0223完成签到,获得积分10
49秒前
49秒前
50秒前
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777811
求助须知:如何正确求助?哪些是违规求助? 4108948
关于积分的说明 12710755
捐赠科研通 3830833
什么是DOI,文献DOI怎么找? 2113107
邀请新用户注册赠送积分活动 1136684
关于科研通互助平台的介绍 1020727