亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning‐based scheme to diagnose Parkinson's disease

计算机科学 人工智能 模式识别(心理学) 接收机工作特性 卷积神经网络 深度学习 混淆矩阵 磁共振成像 机器学习 医学 放射科
作者
Tarjni Vyas,Raj Kumar Yadav,Chitra Solanki,Rutvi Darji,Shivani Desai,Sudeep Tanwar
出处
期刊:Expert Systems [Wiley]
卷期号:39 (3) 被引量:34
标识
DOI:10.1111/exsy.12739
摘要

Abstract Parkinson's disease (PD) is a neurological disorder of the central nervous system that causes difficulty in movement, often including tremors and rigidity. Early detection of PD can prevent symptoms up to a certain age and increase life expectancy. For this purpose, we have used brain images from magnetic resonance imaging (MRI) technique. A deeper level of feature detection in MRI can identify biomarkers that can be used to know how the disease spreads, leading to a cure in the future. With these motives, we have presented two novel approaches using deep learning (DL) techniques. 2D and 3D convolution neural networks (CNN) are used, which are trained on MRI scans in the axial plane. The dataset was constructed using images from Parkinson's progression markers initiative (PPMI). The four pre‐processing techniques used in this article are bias field correction, histogram matching, Z ‐score normalization, and image resizing. Pre‐processing techniques were essential inaccurate training models. Every class prediction done by the model would have taken multiple features into account across multiple layers of the brain and not relied on a single or few important features, making DL a powerful concept. A total of 318 MRI scans were used to train and test a 2D CNN and a 3D CNN model. We have compared the models' results using different evaluation parameters such as accuracy, loss, confusion matrix, receiver operating characteristic (ROC) curve, and precision‐recall (PR) curve. The 3D model learned key features from the data and was able to classify the test data with 88.9% accuracy with 0.86 area under curve (AUC). In contrast, the 2D model achieved a mediocre accuracy of 72.22% with 0.50 AUC. This shows that the 3D model is more accurate and reliable than the 2D model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助神勇颜采纳,获得30
4秒前
大方大船完成签到,获得积分10
8秒前
8秒前
852应助天真咖啡豆采纳,获得10
15秒前
伊笙完成签到 ,获得积分10
23秒前
kaier完成签到 ,获得积分10
33秒前
35秒前
40秒前
46秒前
48秒前
51秒前
hiaoyi完成签到 ,获得积分0
52秒前
科研通AI5应助天真咖啡豆采纳,获得10
57秒前
1分钟前
小芭乐完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
FashionBoy应助hyhyhyhy采纳,获得10
1分钟前
1分钟前
Jason完成签到 ,获得积分10
1分钟前
1分钟前
www发布了新的文献求助10
1分钟前
zyx完成签到,获得积分10
1分钟前
1分钟前
英俊的铭应助柠檬树采纳,获得10
1分钟前
hyhyhyhy发布了新的文献求助10
1分钟前
1分钟前
谨慎开山完成签到,获得积分20
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
若雨凌风应助科研通管家采纳,获得20
1分钟前
若雨凌风应助科研通管家采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
樱桃猴子应助科研通管家采纳,获得10
1分钟前
李健应助天真咖啡豆采纳,获得10
1分钟前
1分钟前
科研通AI5应助hyhyhyhy采纳,获得10
1分钟前
柠檬树发布了新的文献求助10
1分钟前
2分钟前
叶黄戍完成签到,获得积分10
2分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346429
关于积分的说明 10329297
捐赠科研通 3062969
什么是DOI,文献DOI怎么找? 1681276
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763713