间充质干细胞
二甲双胍
细胞生物学
自噬
再生(生物学)
细胞
医学
生物
细胞凋亡
生物化学
糖尿病
内分泌学
作者
Zhiwei Liao,Shuai Li,Saideng Lu,Hui Liu,Gaocai Li,Liang Ma,Rongjin Luo,Wencan Ke,Bingjin Wang,Qian Xiang,Yu Song,Xiaobo Feng,Yukun Zhang,Xinghuo Wu,Wenbin Hua,Yang Cao
出处
期刊:Biomaterials
[Elsevier BV]
日期:2021-05-06
卷期号:274: 120850-120850
被引量:104
标识
DOI:10.1016/j.biomaterials.2021.120850
摘要
Extracellular vesicles (EVs) are extracellular nanovesicles that deliver diverse cargoes to the cell and participate in cell communication. Mesenchymal stem cell (MSCs)-derived EVs are considered a therapeutic approach in musculoskeletal degenerative diseases, including intervertebral disc degeneration. However, limited production yield and unstable quality have impeded the clinical application of EVs. In the present study, it is indicated that metformin promotes EVs release and alters the protein profile of EVs. Metformin enhances EVs production via an autophagy-related pathway, concomitantly with the phosphorylation of synaptosome-associated protein 29. More than quantity, quality of MSCs-derived EVs is influenced by metformin treatment. Proteomics analysis reveals that metformin increases the protein content of EVs involved in cell growth. It is shown that EVs derived from metformin-treated MSCs ameliorate intervertebral disc cells senescence in vitro and in vivo. Collectively, these findings demonstrate the great promise of metformin in EVs-based intervertebral disc regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI