Combining Automated Organoid Workflows with Artificial Intelligence‐Based Analyses: Opportunities to Build a New Generation of Interdisciplinary High‐Throughput Screens for Parkinson's Disease and Beyond

类有机物 工作流程 计算机科学 大数据 可扩展性 神经科学 数据科学 人工智能 生物 数据挖掘 数据库
作者
Henrik Renner,Hans R. Schöler,Jan M. Bruder
出处
期刊:Movement Disorders [Wiley]
卷期号:36 (12): 2745-2762 被引量:22
标识
DOI:10.1002/mds.28775
摘要

Abstract Parkinson's disease (PD) is the second most common neurodegenerative disease and primarily characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Despite decades of research and the development of various disease model systems, there is no curative treatment. This could be due to current model systems, including cell culture and animal models, not adequately recapitulating human PD etiology. More complex human disease models, including human midbrain organoids, are maturing technologies that increasingly enable the strategic incorporation of the missing components needed to model PD in vitro . The resulting organoid‐based biological complexity provides new opportunities and challenges in data analysis of rich multimodal data sets. Emerging artificial intelligence (AI) capabilities can take advantage of large, broad data sets and even correlate results across disciplines. Current organoid technologies no longer lack the prerequisites for large‐scale high‐throughput screening (HTS) and can generate complex yet reproducible data suitable for AI‐based data mining. We have recently developed a fully scalable and HTS‐compatible workflow for the generation, maintenance, and analysis of three‐dimensional (3D) microtissues mimicking key characteristics of the human midbrain (called “automated midbrain organoids,” AMOs). AMOs build a reproducible, scalable foundation for creating next‐generation 3D models of human neural disease that can fuel mechanism‐agnostic phenotypic drug discovery in human in vitro PD models and beyond. Here, we explore the opportunities and challenges resulting from the convergence of organoid HTS and AI‐driven data analytics and outline potential future avenues toward the discovery of novel mechanisms and drugs in PD research. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大厉完成签到 ,获得积分10
4秒前
6秒前
自信的高山完成签到,获得积分10
6秒前
7秒前
Yael发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
16秒前
lxt完成签到 ,获得积分10
17秒前
17秒前
NexusExplorer应助Yael采纳,获得10
19秒前
猪猪hero发布了新的文献求助10
21秒前
小熊完成签到 ,获得积分10
22秒前
轻松白开水完成签到 ,获得积分10
24秒前
Edward完成签到 ,获得积分10
25秒前
xue完成签到 ,获得积分10
26秒前
开心每一天完成签到 ,获得积分10
26秒前
建建完成签到 ,获得积分10
27秒前
zxq完成签到 ,获得积分10
28秒前
平常的三问完成签到 ,获得积分10
30秒前
sunny完成签到,获得积分10
31秒前
33秒前
yimax完成签到 ,获得积分10
33秒前
危机的秋双完成签到 ,获得积分10
35秒前
猪猪hero发布了新的文献求助20
36秒前
白江虎发布了新的文献求助10
38秒前
lululala完成签到 ,获得积分10
42秒前
寒江孤影完成签到,获得积分10
44秒前
111完成签到 ,获得积分10
45秒前
wxy完成签到 ,获得积分10
46秒前
48秒前
超级的千青完成签到 ,获得积分10
50秒前
BowieHuang应助白江虎采纳,获得10
51秒前
51秒前
Dlan完成签到,获得积分10
57秒前
59秒前
matt完成签到,获得积分10
59秒前
风清扬应助科研通管家采纳,获得10
1分钟前
风清扬应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
风清扬应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539156
求助须知:如何正确求助?哪些是违规求助? 4625957
关于积分的说明 14597178
捐赠科研通 4566766
什么是DOI,文献DOI怎么找? 2503614
邀请新用户注册赠送积分活动 1481546
关于科研通互助平台的介绍 1453063