Image Super-Resolution Via Sparse Representation

稀疏逼近 人工智能 模式识别(心理学) 计算机科学 图像(数学) K-SVD公司 图像分辨率 代表(政治) 相似性(几何) 分辨率(逻辑) 面子(社会学概念) 计算机视觉 社会科学 社会学 政治 政治学 法学
作者
Shuicheng Yan,John Wright,Thomas S. Huang,Yi Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:19 (11): 2861-2873 被引量:5130
标识
DOI:10.1109/tip.2010.2050625
摘要

This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ndj发布了新的文献求助10
刚刚
刚刚
千逐完成签到,获得积分10
1秒前
科研通AI2S应助机灵水卉采纳,获得10
1秒前
不吃橘子发布了新的文献求助10
3秒前
wdl完成签到 ,获得积分10
4秒前
风清扬发布了新的文献求助10
4秒前
5秒前
初雪应助zyjhxd采纳,获得10
6秒前
cc应助明礼A采纳,获得10
7秒前
小可乐完成签到,获得积分10
7秒前
Lucky完成签到,获得积分10
7秒前
WIK发布了新的文献求助10
8秒前
8秒前
CLAY发布了新的文献求助10
8秒前
8秒前
卜天亦完成签到,获得积分10
9秒前
10秒前
丘比特应助猪猪hero采纳,获得30
12秒前
能干觅夏完成签到 ,获得积分10
12秒前
朴实尔容完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
完美世界应助专注鼠标采纳,获得30
17秒前
inferyes完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
20秒前
Crazy_Runner完成签到,获得积分10
21秒前
zzz完成签到,获得积分10
21秒前
mcf6662发布了新的文献求助20
22秒前
猪猪hero发布了新的文献求助10
22秒前
23秒前
23秒前
WWK13发布了新的文献求助10
23秒前
Hello应助hnxxangel采纳,获得20
24秒前
24秒前
暮春之初发布了新的文献求助30
25秒前
无私大神完成签到,获得积分10
26秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291599
求助须知:如何正确求助?哪些是违规求助? 3818565
关于积分的说明 11957796
捐赠科研通 3461990
什么是DOI,文献DOI怎么找? 1898907
邀请新用户注册赠送积分活动 947370
科研通“疑难数据库(出版商)”最低求助积分说明 850106