SimGNN

计算机科学 理论计算机科学 成对比较 图形 计算 图嵌入 嵌入 算法 人工智能
作者
Yunsheng Bai,Hao Ding,Song Bian,Ting Chen,Yizhou Sun,Wei Wang
标识
DOI:10.1145/3289600.3290967
摘要

Graph similarity search is among the most important graph-based applications, e.g. finding the chemical compounds that are most similar to a query compound. Graph similarity/distance computation, such as Graph Edit Distance (GED) and Maximum Common Subgraph (MCS), is the core operation of graph similarity search and many other applications, but very costly to compute in practice. Inspired by the recent success of neural network approaches to several graph applications, such as node or graph classification, we propose a novel neural network based approach to address this classic yet challenging graph problem, aiming to alleviate the computational burden while preserving a good performance. The proposed approach, called SimGNN, combines two strategies. First, we design a learnable embedding function that maps every graph into an embedding vector, which provides a global summary of a graph. A novel attention mechanism is proposed to emphasize the important nodes with respect to a specific similarity metric. Second, we design a pairwise node comparison method to supplement the graph-level embeddings with fine-grained node-level information. Our model achieves better generalization on unseen graphs, and in the worst case runs in quadratic time with respect to the number of nodes in two graphs. Taking GED computation as an example, experimental results on three real graph datasets demonstrate the effectiveness and efficiency of our approach. Specifically, our model achieves smaller error rate and great time reduction compared against a series of baselines, including several approximation algorithms on GED computation, and many existing graph neural network based models. Our study suggests SimGNN provides a new direction for future research on graph similarity computation and graph similarity search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铅笔刀完成签到,获得积分10
刚刚
鄂老三发布了新的文献求助30
1秒前
1秒前
like完成签到 ,获得积分10
2秒前
4秒前
Alexbirchurros完成签到 ,获得积分0
4秒前
5秒前
慢慢完成签到,获得积分10
6秒前
赵jl完成签到 ,获得积分10
7秒前
kuailexianchi完成签到,获得积分10
7秒前
li发布了新的文献求助10
8秒前
爆米花应助Souveb采纳,获得10
9秒前
甜蜜高丽完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
纯真的盼柳完成签到,获得积分10
14秒前
16秒前
大胆的琦发布了新的文献求助10
16秒前
cedricleonard发布了新的文献求助10
17秒前
黄鑫完成签到,获得积分20
17秒前
zz完成签到,获得积分10
17秒前
机智谷蕊发布了新的文献求助10
18秒前
18秒前
隐形香水发布了新的文献求助10
18秒前
kunkun发布了新的文献求助10
19秒前
浮浮世世发布了新的文献求助10
19秒前
19秒前
小蘑菇应助黎敏采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
不配.应助殷勤的紫槐采纳,获得400
20秒前
Orange应助科研通管家采纳,获得10
20秒前
zhonglv7应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得30
21秒前
客服小祥应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308956
求助须知:如何正确求助?哪些是违规求助? 4453860
关于积分的说明 13858358
捐赠科研通 4341612
什么是DOI,文献DOI怎么找? 2384051
邀请新用户注册赠送积分活动 1378620
关于科研通互助平台的介绍 1346619