亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning brain conductivity mapping using a patch-based 3D U-net

稳健性(进化) 计算机科学 卷积神经网络 人工智能 深度学习 模式识别(心理学) 电导率 高斯分布 噪音(视频) 人工神经网络 同种类的 机器学习 数学 图像(数学) 物理 量子力学 生物化学 基因 组合数学 化学
作者
Nils Hampe,Ulrich Katscher,Cornelis A. T. van den Berg,Khin Khin Tha,Stefano Mandija
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.1908.04118
摘要

Purpose: To investigate deep learning electrical properties tomography (EPT) for application on different simulated and in-vivo datasets including pathologies for obtaining quantitative brain conductivity maps. Methods: 3D patch-based convolutional neural networks were trained to predict conductivity maps from B1 transceive phase data. To compare the performance of DLEPT networks on different datasets, three datasets were used throughout this work, one from simulations and two from in-vivo measurements from healthy volunteers and cancer patients, respectively. At first, networks trained on simulations are tested on all datasets with different levels of homogeneous Gaussian noise introduced in training and testing. Secondly, to investigate potential robustness towards systematical differences between simulated and measured phase maps, in-vivo data with conductivity labels from conventional EPT is used for training. Results: High quality of reconstructions from networks trained on simulations with and without noise confirms the potential of deep learning for EPT. However, artifact encumbered results in this work uncover challenges in application of DLEPT to in-vivo data. Training DLEPT networks on conductivity labels from conventional EPT improves quality of results. This is argued to be caused by robustness to artifacts from image acquisition. Conclusions: Networks trained on simulations with added homogeneous Gaussian noise yield reconstruction artifacts when applied to in-vivo data. Training with realistic phase data and conductivity labels from conventional EPT allows for severely reducing these artifacts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜羊羊完成签到,获得积分10
3秒前
wanci应助Tiger采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
58秒前
Jasper应助科研通管家采纳,获得10
58秒前
1分钟前
Tiger发布了新的文献求助10
1分钟前
光合作用完成签到,获得积分10
1分钟前
1分钟前
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
点心完成签到,获得积分10
3分钟前
4分钟前
jiaobu发布了新的文献求助30
4分钟前
zxp发布了新的文献求助40
4分钟前
小马甲应助jiaobu采纳,获得10
4分钟前
雷九万班发布了新的文献求助50
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
Owen应助peninsula采纳,获得10
5分钟前
jqliu完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
peninsula发布了新的文献求助10
6分钟前
斯文败类应助yyy采纳,获得10
6分钟前
田様应助peninsula采纳,获得10
6分钟前
小二郎应助科研通管家采纳,获得30
6分钟前
7分钟前
Ryoman完成签到,获得积分10
7分钟前
7分钟前
yyy发布了新的文献求助10
7分钟前
Owen应助JY采纳,获得10
7分钟前
7分钟前
7分钟前
JY发布了新的文献求助10
7分钟前
今后应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助david采纳,获得10
9分钟前
帅气惜霜完成签到 ,获得积分10
9分钟前
xiaolang2004完成签到,获得积分10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340629
关于积分的说明 10300837
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762563