An automated detection of heart arrhythmias using machine learning technique: SVM

支持向量机 混淆矩阵 人工智能 离散小波变换 正常窦性心律 模式识别(心理学) 计算机科学 心律失常 混乱 心力衰竭 小波 窦性心律 小波变换 心脏病学 医学 心房颤动 心理学 精神分析
作者
Ch. Usha Kumari,A. Sampath Dakshina Murthy,B. Lakshmi Prasanna,M. Pala Prasad Reddy,Asisa Kumar Panigrahy
出处
期刊:Materials Today: Proceedings [Elsevier]
卷期号:45: 1393-1398 被引量:110
标识
DOI:10.1016/j.matpr.2020.07.088
摘要

Abstract Electrocardiogram (ECG) is widely used technique in study of heart beat irregularities such as cardiac arrhythmias, sinus rhythms and heart failure. It is a significant and popular technique to classify and detect the cardiac infraction. ECG signal analyses the electric activity of heart and outputs it in the form of waveforms which help in detection of heart irregularities. The main goal of this research work is to classify the arrhythmia with more accurate results in less computational time. The research is carried in machine learning technique- SVM classifier using Discrete Wavelet Transform (DWT). In this methodology, ECG samples of three different classes-Normal Sinus Rhythm, Congestive Heart Failure and Cardiac Arrhythmia were collected from MIT-BIH and BIDMC databanks. The collected signals were prepared into training set and testing set with a ratio of 70:30 percent respectively. Total 190 features were extracted from the prepared data using Discrete Wavelet Transform. DWT was chosen as it has the ability to vary the window size depending on the frequency. The extracted features were given to SVM classifier, which is best for classification purpose. The results were evaluated using the testing set and the final results were plotted using a confusion matrix. The performance accuracy of the model is 95.92 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bubu发布了新的文献求助10
刚刚
刚刚
1秒前
NexusExplorer应助ark861023采纳,获得10
1秒前
1秒前
共享精神应助悲凉的新筠采纳,获得10
2秒前
木头人完成签到,获得积分10
3秒前
3秒前
yhl发布了新的文献求助10
4秒前
4秒前
LQ完成签到,获得积分10
5秒前
小鬼1004完成签到,获得积分10
7秒前
胖虎妈完成签到,获得积分20
7秒前
7秒前
隐形曼青应助florawu采纳,获得30
9秒前
Shannon发布了新的文献求助50
9秒前
打打应助张三采纳,获得10
10秒前
11秒前
西红柿完成签到,获得积分10
11秒前
是我不得开心妍完成签到 ,获得积分10
11秒前
11秒前
11秒前
Owen应助缓慢采柳采纳,获得10
12秒前
大西完成签到,获得积分20
13秒前
胖虎妈发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
yt发布了新的文献求助10
15秒前
15秒前
情怀应助SWD采纳,获得10
16秒前
路痴完成签到,获得积分10
16秒前
Kiritoshi应助滚筒洗衣机采纳,获得30
16秒前
大西发布了新的文献求助10
17秒前
辛勤梦蕊发布了新的文献求助10
17秒前
17秒前
18秒前
hearts_j发布了新的文献求助10
18秒前
领导范儿应助Rita采纳,获得10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486300
求助须知:如何正确求助?哪些是违规求助? 4585898
关于积分的说明 14407091
捐赠科研通 4516365
什么是DOI,文献DOI怎么找? 2474768
邀请新用户注册赠送积分活动 1460688
关于科研通互助平台的介绍 1433773