蛋白质组学
蛋白质组
大数据
计算机科学
数据科学
样品(材料)
软件部署
数据采集
医学研究
精密医学
质谱法
计算生物学
数据挖掘
生物信息学
医学
生物
化学
色谱法
病理
基因
操作系统
生物化学
作者
Liang Yue,Fangfei Zhang,Rui Sun,Yaoting Sun,Chunhui Yuan,Yi Zhu,Tiannan Guo
出处
期刊:Proteomics
[Wiley]
日期:2020-07-29
卷期号:20 (21-22): e1900358-e1900358
被引量:12
标识
DOI:10.1002/pmic.201900358
摘要
Abstract Here, the authors reason that the complexity of medical problems and proteome science might be tackled effectively with deep learning (DL) technology. However, deployment of DL for proteomics data requires the acquisition of data sets from a large number of samples. Based on the success of DL in medical imaging classification, proteome data from thousands of samples are arguably the minimal input for DL. Contemporary proteomics is turning high‐throughput thanks to the rapid progresses of sample preparation and liquid chromatography mass spectrometry methods. In particular, data‐independent acquisition now enables the generation of hundreds to thousands of quantitative proteome maps from clinical specimens in clinical cohorts with only limited sample amounts in clinical cohorts. Upheavals in the design of large‐scale clinical proteomics studies might be required to generate proteomic big data and deploy DL to tackle complex medical problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI