Exploring the Potential of High-Resolution Satellite Imagery for the Detection of Soybean Sudden Death Syndrome

遥感 环境科学 样方 归一化差异植被指数 高分辨率 植被(病理学) 卫星图像 卫星 农学 生物 地理 叶面积指数 生态学 医学 物理 灌木 病理 天文
作者
Muhammad Mohsin Raza,Chris Harding,Matt Liebman,L. F. S. Leandro
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (7): 1213-1213 被引量:34
标识
DOI:10.3390/rs12071213
摘要

Sudden death syndrome (SDS) is one of the major yield-limiting soybean diseases in the Midwestern United States. Effective management for SDS requires accurate detection in soybean fields. Since traditional scouting methods are time-consuming, labor-intensive, and often destructive, alternative methods to monitor SDS in large soybean fields are needed. This study explores the potential of using high-resolution (3 m) PlanetScope satellite imagery for detection of SDS using the random forest classification algorithm. Image data from blue, green, red, and near-infrared (NIR) spectral bands, the calculated normalized difference vegetation index (NDVI), and crop rotation information were used to detect healthy and SDS-infected quadrats in a soybean field experiment with different rotation treatments, located in Boone County, Iowa. Datasets collected during the 2016, 2017, and 2018 soybean growing seasons were analyzed. The results indicate that spectral features, when combined with ground-based information, can detect areas in soybean plots that are at risk for disease, even before foliar symptoms develop. The classification of healthy and diseased soybean quadrats was >75% accurate and the area under the receiver operating characteristic curve (AUROC) was >70%. Our results indicate that high-resolution satellite imagery and random forest analyses have the potential to detect SDS in soybean fields, and that this approach may facilitate large-scale monitoring of SDS (and possibly other economically important soybean diseases). It may also be useful for guiding recommendations for site-specific management in current and future seasons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后蓝天完成签到,获得积分10
刚刚
1秒前
1秒前
秋丶凡尘完成签到,获得积分10
1秒前
王哪儿跑0_0完成签到,获得积分20
1秒前
Shinchan完成签到,获得积分10
1秒前
詹子阳发布了新的文献求助10
1秒前
李乾坤完成签到,获得积分10
2秒前
略略略完成签到,获得积分10
3秒前
hanhan完成签到,获得积分10
3秒前
星星完成签到,获得积分10
3秒前
多发论文早毕业完成签到,获得积分10
3秒前
4秒前
4秒前
毅诚菌完成签到,获得积分10
4秒前
ifast完成签到 ,获得积分10
4秒前
余生发布了新的文献求助50
4秒前
葳蕤完成签到,获得积分10
4秒前
hehehe完成签到,获得积分10
4秒前
5秒前
H-kevin.完成签到 ,获得积分10
5秒前
MoodMeed完成签到,获得积分10
5秒前
曼凡完成签到,获得积分10
6秒前
我爱科研科研爱我完成签到,获得积分10
7秒前
黑白菜完成签到,获得积分10
7秒前
123完成签到,获得积分10
8秒前
研友_rLmNXn发布了新的文献求助10
8秒前
8秒前
俏皮火完成签到 ,获得积分10
8秒前
kanoz完成签到,获得积分10
8秒前
草履虫完成签到,获得积分10
9秒前
科研通AI6应助funnyelephant采纳,获得10
9秒前
luyong完成签到 ,获得积分10
9秒前
LL发布了新的文献求助10
10秒前
10秒前
慕青应助科小白采纳,获得10
10秒前
谨慎的幻悲完成签到,获得积分10
11秒前
11秒前
云朗完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4743428
求助须知:如何正确求助?哪些是违规求助? 4092679
关于积分的说明 12660281
捐赠科研通 3803864
什么是DOI,文献DOI怎么找? 2100058
邀请新用户注册赠送积分活动 1125373
关于科研通互助平台的介绍 1001805