13-lncRNAs Signature to Improve Diagnostic and Prognostic Prediction of Hepatocellular Carcinoma

接收机工作特性 比例危险模型 单变量 肿瘤科 Lasso(编程语言) 肝细胞癌 内科学 生存分析 医学 多元统计 多元分析 癌症研究 生物信息学 癌症 生物标志物 计算生物学 计算机科学 机器学习 万维网
作者
Xinxin Zhang,Jia Yu,Juan Hu,Fang Tan,Juan Zhou,Xiaoyan Yang,Zhizhong Xie,Huifang Tang,Sen Dong,Xiaoyong Lei
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:24 (5): 656-667 被引量:1
标识
DOI:10.2174/1386207323666200914095616
摘要

Background: Hepatocellular carcinoma (HCC) is a common type of cancer with a high mortality rate and is usually detected at the middle or late stage, missing the optimal treatment period. The current study aims to identify potential long non-coding RNA (lncRNAs) biomarkers that contribute to the diagnosis and prognosis of HCC. Methods: The differentially expressed lncRNAs (DElncRNAs) in HCC patientsThe differentially expressed lncRNAs (DElncRNAs) in HCC patients were detected from the Cancer Genome Atlas (TCGA) dataset. LncRNAs signature was screened by LASSO regression, univariate, and multivariate Cox regression. The models for predicting diagnosis and prognosis were established, respectively. The prognostic model was evaluated by Kaplan-Meier survival curve receiver operating characteristic (ROC) curve and stratified analysis. The diagnostic model was validated by ROC. The lncRNAs signature was further demonstrated by functional enrichment analysis. were detected from the Cancer Genome Atlas (TCGA) dataset. LncRNAs signature was screened by LASSO regression, univariate and multivariate Cox regression. The models for predicting diagnosis and prognosis were established respectively. The prognostic model was evaluated by Kaplan-Meier survival curve receiver operating characteristic (ROC) curve and stratified analysis. The diagnostic model was validated by ROC. The lncRNAs signature was further demonstrated by functional enrichment analysis. Results: We found the 13-lncRNAs signature that had a good performance in predicting prognosis and could help to improve the value of diagnosis. In the training set, testing set, and entire cohort, the low-risk group had longer survival than the high-risk group (median OS: 3124 vs. 649 days, 2456 vs. 770 days and 3124 vs. 755 days). It performed well in 1-, 3-, and 5-year survival prediction. 13-lncRNAs-based risk score, age, and race were good predictors of prognosis. The AUC of diagnosis was 0.9487, 0.9265, and 0.9376, respectively. Meanwhile, the 13-lncRNAs were involved in important pathways, including the cell cycle and multiple metabolic pathways. Conclusion: In our study, the 13-lncRNAs signature may be a potential marker for the prognosis of HCC and improve the diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助学术版7e采纳,获得30
刚刚
1秒前
ca0ca0完成签到,获得积分10
1秒前
littleyiiiii发布了新的文献求助10
2秒前
2秒前
3秒前
guoguo完成签到,获得积分10
3秒前
顺心绮兰完成签到,获得积分10
3秒前
活A发布了新的文献求助10
3秒前
4秒前
无私追命完成签到,获得积分10
4秒前
南_完成签到,获得积分10
6秒前
6秒前
7秒前
无私追命发布了新的文献求助10
8秒前
高级丹药师完成签到,获得积分10
8秒前
Ninging发布了新的文献求助10
8秒前
9秒前
玩儿发布了新的文献求助10
9秒前
鲤鱼月饼完成签到 ,获得积分10
10秒前
11秒前
11秒前
风趣夜云完成签到,获得积分10
12秒前
lsq108完成签到,获得积分10
12秒前
徐家小乐完成签到,获得积分10
13秒前
lsq108发布了新的文献求助10
15秒前
15秒前
16秒前
信件箱完成签到 ,获得积分10
18秒前
科研通AI5应助玩儿采纳,获得10
18秒前
19秒前
20秒前
21秒前
LMNg6n完成签到,获得积分10
21秒前
Mira发布了新的文献求助30
22秒前
cortex完成签到 ,获得积分10
23秒前
23秒前
24秒前
yingying发布了新的文献求助10
24秒前
Gracie完成签到 ,获得积分10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809074
求助须知:如何正确求助?哪些是违规求助? 3353786
关于积分的说明 10367023
捐赠科研通 3069992
什么是DOI,文献DOI怎么找? 1685889
邀请新用户注册赠送积分活动 810759
科研通“疑难数据库(出版商)”最低求助积分说明 766355