A Reference Vector-Based Simplified Covariance Matrix Adaptation Evolution Strategy for Constrained Global Optimization

CMA-ES公司 进化策略 数学优化 进化算法 水准点(测量) 计算机科学 协方差矩阵 多目标优化 最优化问题 进化计算 排名(信息检索) 帕累托原理 人口 数学 算法 人工智能 人口学 地理 社会学 大地测量学
作者
Abhishek Kumar,Swagatam Das,Rammohan Mallipeddi
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (5): 3696-3709 被引量:15
标识
DOI:10.1109/tcyb.2020.3013950
摘要

During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyiren发布了新的文献求助10
刚刚
哟哟哟完成签到,获得积分10
1秒前
充电宝应助李大侠采纳,获得10
1秒前
科研通AI6应助yy采纳,获得10
1秒前
1秒前
Labubuz完成签到,获得积分10
2秒前
2秒前
东方元语应助彩色的芝麻采纳,获得20
2秒前
bingsu108完成签到,获得积分10
3秒前
4秒前
李LLL完成签到,获得积分20
5秒前
5秒前
Liu完成签到,获得积分10
6秒前
木寺发布了新的文献求助10
6秒前
Ava应助dongbei采纳,获得10
6秒前
丘比特应助WNL采纳,获得10
7秒前
yiersan完成签到,获得积分10
7秒前
雪白发卡完成签到,获得积分10
7秒前
领导范儿应助路宝采纳,获得10
8秒前
Orange应助一一采纳,获得10
9秒前
句号完成签到,获得积分10
9秒前
wang完成签到,获得积分10
10秒前
10秒前
孤独的夏青完成签到,获得积分10
10秒前
前程似锦的中国文明完成签到,获得积分10
10秒前
木寺完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
CX发布了新的文献求助10
13秒前
13秒前
星辰大海应助chiweiyoung采纳,获得10
13秒前
13秒前
wao发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助西瓜汁采纳,获得10
15秒前
dadadaniu发布了新的文献求助10
15秒前
道阻且长发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630726
求助须知:如何正确求助?哪些是违规求助? 4723433
关于积分的说明 14975167
捐赠科研通 4788960
什么是DOI,文献DOI怎么找? 2557317
邀请新用户注册赠送积分活动 1518042
关于科研通互助平台的介绍 1478679