Adjuvant and Neoadjuvant Treatment of Triple-Negative Breast Cancer With Chemotherapy

医学 三阴性乳腺癌 肿瘤科 化疗 乳腺癌 紫杉烷 蒽环类 养生 内科学 雌激素受体 佐剂 阶段(地层学) 新辅助治疗 癌症 生物 古生物学
作者
Antonio Marra,Giuseppe Curigliano
出处
期刊:The cancer journal [Lippincott Williams & Wilkins]
卷期号:27 (1): 41-49 被引量:51
标识
DOI:10.1097/ppo.0000000000000498
摘要

Abstract Triple-negative breast cancer (TNBC) accounts for 15% to 20% of all invasive breast carcinomas and is defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Although TNBC is characterized by high rates of disease recurrence and worse survival, it is significantly more sensitive to chemotherapy as compared with other breast cancer subtypes. Accordingly, despite great efforts in the genomic characterization of TNBC, chemotherapy still represents the cornerstone of treatment. For the majority of patients with early-stage TNBC, sequential anthracycline- and taxane-based neoadjuvant chemotherapy (NACT) represents the standard therapeutic approach, with pathological complete response that strongly correlates with long-term survival outcomes. However, some issues about the optimal neoadjuvant regimen, as well as the effective role of chemotherapy in patients with residual disease after NACT, are still debated. Herein, we will review the current evidences that guide the use of (neo)adjuvant chemotherapy in patients with early-stage TNBC. Furthermore, we will discuss current controversies, including the incorporation of platinum compounds to the neoadjuvant backbone and the optimal treatment for patients with residual disease after NACT. Lastly, we will outline potential future directions that can guide treatment escalation and de-escalation, as well as the development of new therapies. In our view, the application of multi-omics technologies, liquid biopsy assays, and machine learning algorithms are strongly warranted to pave the way toward personalized anticancer treatment for early-stage TNBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陶醉山灵发布了新的文献求助10
刚刚
H_Hou完成签到,获得积分20
1秒前
颜靖仇发布了新的文献求助10
1秒前
fy发布了新的文献求助10
1秒前
leekle完成签到,获得积分10
1秒前
Ann完成签到,获得积分10
2秒前
AAA发布了新的文献求助10
2秒前
水聿发布了新的文献求助10
2秒前
刘江龙完成签到,获得积分10
3秒前
3秒前
zero完成签到 ,获得积分10
4秒前
六的飞起完成签到,获得积分20
5秒前
冰魂应助单薄的雪兰采纳,获得10
5秒前
六的飞起发布了新的文献求助30
7秒前
燕燕于飞发布了新的文献求助10
8秒前
DOG完成签到,获得积分10
8秒前
我没那么郝完成签到,获得积分10
8秒前
9秒前
Akim应助包远锋采纳,获得10
9秒前
fy完成签到,获得积分10
9秒前
乐乐应助孤独的匕采纳,获得10
9秒前
852应助水聿采纳,获得10
10秒前
梅子完成签到,获得积分10
11秒前
陈慧青关注了科研通微信公众号
11秒前
激动的大山完成签到,获得积分10
11秒前
裘文献完成签到 ,获得积分10
12秒前
JET_Li完成签到,获得积分10
13秒前
13秒前
1128发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
DE完成签到,获得积分10
16秒前
16秒前
singlestrand完成签到,获得积分10
16秒前
我是老大应助sdl采纳,获得10
17秒前
18秒前
IchenNG发布了新的文献求助10
19秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588