Phenotyping comorbidity in obstructive sleep apnea syndrome

共病 医学 逻辑回归 阻塞性睡眠呼吸暂停 肥胖 内科学 睡眠呼吸暂停 单变量分析 多元分析
作者
George D. Vavougios,George A. Natsios,Chaido Pastaka,Sotirios G. Zarogiannis,Konstantinos I. Gourgoulianis
标识
DOI:10.1183/13993003.congress-2015.pa2357
摘要

Background: Phenotyping OSAS9 comorbidity has only recently been attempted for the first time. Our aim was determine phenotypes of comorbidity in OSAS patients employing a data-driven approach. Methods: Data from 1472 consecutive patient records were recovered from our sleep laboratory9s database. Categorical Principal Component Analysis and TwoStep Clustering were employed to detect distinct clusters in the data. Univariate comparisons included One-Way ANOVA with Bonferroni correction and Chi-Square tests. Predictors of pairwise cluster membership were determined via a binary logistic regression model. Results: Six distinct clusters were identified; A: "Healthy, reporting sleeping related symptoms", B: "Mild OSAS without significant comorbidities", C1: "Moderate OSAS, obesity, without significant comorbidities", C2: "moderate OSAS with severe comorbidity, obesity and exclusively including stroke", D1: "severe OSAS and obesity without comorbidity and a 33.8% prevalence of hypertension" and D2: "severe OSAS with severe comorbidities, along with the highest ESS score and highest BMI". Clusters differed significantly in AHI, DI, AI, Age, BMI, minimum SaO2,daytime SaO2 (one-way ANOVA p<0.0001). Binary Logistic Regression determined that older Age, greater BMI, lower daytime SaO2 and Hypertension were independently associated with an increased risk of belonging in a comorbid cluster. Conclusion: Five distinct phenotypes of OSAS and its comorbidities were identified. Mapping the heterogeneity of OSAS may help identify at-risk groups early; Finally, determining predictors of comorbidity for the moderate and severe strata of these phenotypes implies a need to evaluate these factors when considering treatment options.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
图图应助河水弯弯采纳,获得10
2秒前
cdercder应助boshi采纳,获得10
4秒前
JamesPei应助无奈的凡双采纳,获得10
4秒前
丫丫给丫丫的求助进行了留言
4秒前
xianjingli发布了新的文献求助10
4秒前
4秒前
6秒前
M先生完成签到,获得积分20
10秒前
nannan发布了新的文献求助10
11秒前
wcj完成签到,获得积分10
11秒前
Windycityguy发布了新的文献求助200
12秒前
斯寜应助boshi采纳,获得10
12秒前
xianjingli完成签到,获得积分10
13秒前
SYLH应助非而者厚采纳,获得10
13秒前
ding应助倒数第二采纳,获得10
14秒前
14秒前
萌萌哒的鸡蛋饼完成签到 ,获得积分10
17秒前
17秒前
17秒前
lqm完成签到,获得积分10
17秒前
深情安青应助搬砖人采纳,获得10
17秒前
徐doc完成签到 ,获得积分10
18秒前
18秒前
gwh发布了新的文献求助10
19秒前
Shanice发布了新的文献求助10
19秒前
wkx完成签到,获得积分10
20秒前
彭于晏应助MYZ采纳,获得10
20秒前
期待未来的自己应助boshi采纳,获得10
21秒前
lqm发布了新的文献求助10
21秒前
明亮随阴完成签到,获得积分10
21秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
22秒前
czyzyzy完成签到,获得积分10
23秒前
syl发布了新的文献求助10
23秒前
CipherSage应助相濡以沫采纳,获得10
23秒前
珈蓝完成签到,获得积分10
24秒前
昵称完成签到,获得积分10
25秒前
menghuigucha完成签到,获得积分10
26秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831456
求助须知:如何正确求助?哪些是违规求助? 3373651
关于积分的说明 10480903
捐赠科研通 3093621
什么是DOI,文献DOI怎么找? 1702802
邀请新用户注册赠送积分活动 819198
科研通“疑难数据库(出版商)”最低求助积分说明 771284