过电位
材料科学
贵金属
电子转移
化学物理
电解
催化作用
Crystal(编程语言)
相(物质)
阴极
分解水
离子
碱性水电解
氢
无机化学
基本电荷
膜
纳米技术
电子结构
二极管
晶体结构
电子
化学工程
电解水
电催化剂
金属
单晶
兴奋剂
铂金
作者
Binjie Li,Kunkun Nie,Kangning Wang,Xinpeng Tang,Ruijia Wang,Lixin Yi,Yujia Zhang,Ziyi Wang,Jingtian Wang,Xiaorong Hao,Chen Hu,Wenlin Zhang,Zhengqing Liu,Huang Wei
标识
DOI:10.1002/adma.202518017
摘要
Abstract Electronic metal‐support interaction (EMSI) represents a pivotal strategy for modulating the electronic structure of supported metals and enhancing their catalytic performance. However, limited reports have been conducted on the impact of the support crystal phase on EMSI. Here, a charge transfer inversion phenomenon associated with support crystal phase regulation is systematically revealed. Specifically, subnano‐sized noble metals (e.g., Pt, Rh, Ru) donate electrons to 2H‐MoS 2 support, whereas a reverse electron transfer direction is observed when these noble metals are supported on 1T‐MoS 2 . Electron‐enriched noble metals demonstrate significantly higher activity for alkaline hydrogen evolution compared to their electron‐deficient counterparts, with 1T‐MoS 2 @Pt achieving an exceptionally low overpotential of 18 mV at 10 mA cm −2 . Furthermore, an anion exchange membrane water electrolyzer (AEMWE) incorporating 1T‐MoS 2 @Pt as the cathode exhibits superior catalytic activity and sustained stability at ampere‐level current density. This work provides novel insights into developing efficient catalysts by regulating charge transfer dependent on the support crystal phase.
科研通智能强力驱动
Strongly Powered by AbleSci AI