阳极
材料科学
共价键
离子电导率
离子键合
化学工程
复合数
电极
电导率
压力(语言学)
聚合物
扩散
超分子化学
纳米技术
自组装
PEG比率
电解质
热稳定性
体积热力学
复合材料
降级(电信)
工作(物理)
溴化铵
纳米复合材料
超分子聚合物
电化学
化学稳定性
变形(气象学)
共价有机骨架
作者
Tinghao Yun,Kexing Cai,Zhijie Jiang,Jun Zhao,L Li,Sihong Du,Xuzhou Yan
标识
DOI:10.1002/anie.202525354
摘要
Abstract Silicon/carbon (Si/C) composite anodes are among the most promising candidates for high‐energy‐density lithium‐ion batteries but suffer from severe volume fluctuation and interfacial degradation during cycling. Herein, we report a water‐processable covalent‐and‐supramolecular polymeric binders (CSPBs) that synergistically dissipate mechanical stress and promote Li + transport to stabilize the Si/C anode interface. The CSPBs integrate poly(acrylic acid) (PAA), amine‐terminated eight‐arm poly(ethylene glycol) (8arm‐PEG‐NH 2 ), and benzo‐21‐crown‐7/secondary ammonium host–guest complexes through amidation during electrode fabrication. The covalent linkages impart strong structural integrity, while the reversible supramolecular interactions act as sacrificial bonds to dissipate stress arising from Si volume expansion. Additionally, oxygen‐rich PEG chains form continuous Li + conduction pathways, enabling efficient ion transport. As a result, the CSPB‐ 2 ‐based Si/C anode delivers a high specific capacity of 582.0 mAh g −1 after 265 cycles at 1C, with superior rate capability than the electrodes based on PAA or solely covalently cross‐linked binders (CCBs). Kinetic analysis reveals an enhanced Li + diffusion coefficient, confirming the improved ionic conductivity of the binder system. This work demonstrates a new strategy for integrating covalent anchoring and dynamic supramolecular adaptability within a sustainable, water‐processable polymeric binder system, paving the way for the design of durable and high‐performance silicon‐based anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI