计算机科学
利用
翻译(生物学)
卷积神经网络
理论计算机科学
聚类分析
图形
光谱聚类
领域(数学分析)
谱图论
拉普拉斯算子
人工智能
模式识别(心理学)
数学
折线图
数学分析
生物化学
化学
计算机安全
信使核糖核酸
图形功率
基因
作者
Joan Bruna,Wojciech Zaremba,Arthur Szlam,Yann LeCun
出处
期刊:Cornell University - arXiv
日期:2013-12-21
被引量:2709
标识
DOI:10.48550/arxiv.1312.6203
摘要
Convolutional Neural Networks are extremely efficient architectures in image and audio recognition tasks, thanks to their ability to exploit the local translational invariance of signal classes over their domain. In this paper we consider possible generalizations of CNNs to signals defined on more general domains without the action of a translation group. In particular, we propose two constructions, one based upon a hierarchical clustering of the domain, and another based on the spectrum of the graph Laplacian. We show through experiments that for low-dimensional graphs it is possible to learn convolutional layers with a number of parameters independent of the input size, resulting in efficient deep architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI