Natural Frequency of Cancer Cells as a Starting Point in Cancer Treatment

癌症 自然(考古学) 癌症治疗 医学 点(几何) 肿瘤科 内科学 生物 数学 几何学 古生物学
作者
Saravana Kumar Jaganathan,Aruna Priyadarshni Subramanian,Muthu Vignesh Vellayappan,Arunpandian Balaji,Agnes Aruna John,Ashok Kumar Jaganathan,Eko Supriyanto
出处
期刊:Current Science [Indian Academy of Sciences]
卷期号:110 (9): 1828-1828 被引量:8
标识
DOI:10.18520/cs/v110/i9/1828-1832
摘要

Breast cancer and prostate cancer are the most common gender-specific types of cancer among women and men respectively, around the world. The most preferred treatment embraced by the patients is chemotherapy. The anticancer drugs developed and used so far cannot completely cure cancer at all stages and also exhibit some side effects in the patients who undergo chemotherapy. Besides this, some cancer cells eventually acquire resistance to many drugs and evade the treatment procedures. All these factors play a vital role in persuading the researches to find alternative modes of treatment for cancer. This communication proposes an unconventional mode of cancer treatment by determining the natural frequencies of normal and cancer cells. By utilizing these frequencies, it is possible to kill the cancer cells specifically, sparing the healthy cells. The normal and cancer cells in case of breast (MCF-10A, MCF-7) as well as prostate cancer (BPH, LNCap) are modelled as a sphere in ANSYS. The modal analysis is done in order to obtain their natural frequencies along with their mode shapes at different frequencies. The results show that the natural frequency of the normal cells is much higher than that of the cancer cells at each corresponding mode. The natural frequency is proportional to the mechanical properties of the cells and is insignificant with respect to the change in diameter of the cells. Thus, utilizing the natural frequency, cancer cells may be specifically targeted while the burdens of chemotherapy and drug resistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21240713084完成签到,获得积分20
刚刚
狗尾巴草发布了新的文献求助10
1秒前
啦啦啦完成签到 ,获得积分10
1秒前
Alex发布了新的文献求助10
1秒前
3秒前
晓晓完成签到,获得积分20
4秒前
zhanghhhy完成签到,获得积分10
6秒前
学霸宇大王完成签到 ,获得积分10
8秒前
莫问发布了新的文献求助10
8秒前
night完成签到 ,获得积分10
8秒前
wwho_O完成签到 ,获得积分10
9秒前
科研通AI2S应助john采纳,获得10
9秒前
传奇3应助carl采纳,获得10
11秒前
11秒前
12秒前
Ortho完成签到 ,获得积分10
13秒前
hfhkjh发布了新的文献求助10
15秒前
伶俐的不评完成签到,获得积分10
16秒前
16秒前
莫问完成签到,获得积分20
18秒前
英姑应助carl采纳,获得30
20秒前
zhogwe发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
LM发布了新的文献求助10
21秒前
冰魂应助华风采纳,获得30
21秒前
orixero应助hfhkjh采纳,获得30
21秒前
杨佳睿完成签到 ,获得积分10
21秒前
竹桃完成签到 ,获得积分10
22秒前
秋向秋完成签到,获得积分10
24秒前
25秒前
txyouniverse完成签到 ,获得积分10
27秒前
29秒前
比巴卜发布了新的文献求助10
33秒前
古德day发布了新的文献求助10
33秒前
慕青应助Mayday采纳,获得10
34秒前
35秒前
自然完成签到,获得积分10
36秒前
37秒前
香蕉觅云应助快去看文献采纳,获得10
37秒前
zz完成签到 ,获得积分10
38秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886741
求助须知:如何正确求助?哪些是违规求助? 3428993
关于积分的说明 10763368
捐赠科研通 3154048
什么是DOI,文献DOI怎么找? 1741384
邀请新用户注册赠送积分活动 840632
科研通“疑难数据库(出版商)”最低求助积分说明 785494