迭代重建
蒙特卡罗方法
正规化(语言学)
平滑的
正电子发射断层摄影术
计算机科学
稳健性(进化)
算法
分段
Pet成像
全变差去噪
人工智能
计算机视觉
数学优化
数学
图像(数学)
核医学
统计
医学
数学分析
生物化学
化学
基因
作者
Chenye Wang,Zhenghui Hu,Pengcheng Shi,Huafeng Liu
标识
DOI:10.1109/embc.2014.6943986
摘要
Low dose positron emission tomography(PET) reconstruction remains a challenging issue for statistical PET reconstruction methods due to the low SNR of data. Due to the ill-conditioning of image reconstruction, proper prior knowledge should be incorporated to constrain the reconstruction. Since PET images are piecewise smoothing, we propose the total variational (TV) minimization based algorithm for low dose PET imaging. The fundamental power of this strategy rests with the edge locations of important image features tend to be preserved thanks to TV regularization. In addition, a new computational method have been employed with improved computational speed and robustness. Experimental results on Monte Carlo simulations demonstrate its superior performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI