ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation

培训(气象学) 比例(比率) 计算机科学 业务 知识管理 地理 地图学 气象学
作者
Yu Sun,Shuohuan Wang,Shikun Feng,Siyu Ding,Chao Pang,Junyuan Shang,Jiaxiang Liu,Xuyi Chen,Yanbin Zhao,Yuxiang Lu,Weixin Liu,Zhihua Wu,Weibao Gong,Liang Jian-zhong,Zhizhou Shang,Peng Sun,Wei Liu,Xuan Ouyang,Dianhai Yu,Hao Tian,Hua Wu,Haifeng Wang
出处
期刊:Cornell University - arXiv 被引量:151
标识
DOI:10.48550/arxiv.2107.02137
摘要

Pre-trained models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. Recent works such as T5 and GPT-3 have shown that scaling up pre-trained language models can improve their generalization abilities. Particularly, the GPT-3 model with 175 billion parameters shows its strong task-agnostic zero-shot/few-shot learning capabilities. Despite their success, these large-scale models are trained on plain texts without introducing knowledge such as linguistic knowledge and world knowledge. In addition, most large-scale models are trained in an auto-regressive way. As a result, this kind of traditional fine-tuning approach demonstrates relatively weak performance when solving downstream language understanding tasks. In order to solve the above problems, we propose a unified framework named ERNIE 3.0 for pre-training large-scale knowledge enhanced models. It fuses auto-regressive network and auto-encoding network, so that the trained model can be easily tailored for both natural language understanding and generation tasks with zero-shot learning, few-shot learning or fine-tuning. We trained the model with 10 billion parameters on a 4TB corpus consisting of plain texts and a large-scale knowledge graph. Empirical results show that the model outperforms the state-of-the-art models on 54 Chinese NLP tasks, and its English version achieves the first place on the SuperGLUE benchmark (July 3, 2021), surpassing the human performance by +0.8% (90.6% vs. 89.8%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIBALA发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
超级盼海发布了新的文献求助10
2秒前
2秒前
2秒前
牛牛发布了新的文献求助10
3秒前
稳定上分发布了新的文献求助30
3秒前
3秒前
fy发布了新的文献求助10
3秒前
LIIII完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
曹7完成签到,获得积分20
6秒前
嘿咻嘿咻完成签到,获得积分10
6秒前
QQ糖完成签到,获得积分10
6秒前
7秒前
8秒前
爆米花应助哈哈采纳,获得10
8秒前
8秒前
mike发布了新的文献求助10
8秒前
Yuuki完成签到,获得积分10
9秒前
gggqh发布了新的文献求助10
9秒前
淡淡的雪完成签到,获得积分10
9秒前
XD824发布了新的文献求助10
9秒前
充电宝应助盖世汤圆采纳,获得10
9秒前
安白发布了新的文献求助10
9秒前
勤劳的小刺猬完成签到,获得积分10
9秒前
10秒前
10秒前
fy完成签到,获得积分10
10秒前
nuoyefenfei完成签到,获得积分10
11秒前
11秒前
11秒前
dahuihui完成签到,获得积分20
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806134
求助须知:如何正确求助?哪些是违规求助? 3350986
关于积分的说明 10352268
捐赠科研通 3066831
什么是DOI,文献DOI怎么找? 1684153
邀请新用户注册赠送积分活动 809346
科研通“疑难数据库(出版商)”最低求助积分说明 765463