亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of Fast SoH Estimation of Li-Ion Battery Pack/Modules Using Multi Series-Parallel based ANN Structure

电池(电) 计算机科学 电池组 健康状况 一般化 可靠性(半导体) 过程(计算) 降级(电信) 功率(物理) 人工神经网络 可靠性工程 人工智能 工程类 电信 数学分析 物理 数学 量子力学 操作系统
作者
Minella Bezha,Taro Nanahara,Naoto Nagaoka
标识
DOI:10.1109/ecce-asia49820.2021.9479414
摘要

This paper proposes an innovative state of health (SoH) estimation of the battery pack for the reused Li-Ion cells. Due to the elevated significance and interest of the overall system performance, reliability, safety and long lifetime operation, it is necessary an accurate estimation of the lithiumion batteries health status. In case of a battery pack, the degradation of each cell, will affect and result in the increase of the deterioration process of conjoint cell, and furthermore to the total degradation of the battery pack and malfunction of the normal operation. Therefore, to resolve such issue, a novel method is developed in this article, based on multi series-parallel ANN structure which will concludes with accurate and fast SoH estimation of the battery with used Li-Ion cells. Its accuracy and calculation time are improved and accelerated using an online modeling approach (during operation) with optimal generalization. By the voltage and current as the main inputs and with the help of secondary information as temperature and cycle usage, it can be possible to describe the actual quantity of energy, which is a key factor in applications. The structure of the ANN is based on multi-series parallel configuration algorithm, combining the long-short term memory (LSTM) NN features with the Convolutional neural network (CNN) abilities which enhance the ability of stable and fast estimation during all the testing period of the pack, by further reducing the computational power and increasing the generalization of the proposed paper. In this paper, the SoH estimation time is reduced to 46%, peak error and average error are reduced by 36.3% and 23.4%, comparing with the previous work of the authors. Also, it is confirmed on this study that the proposed method can be applicable not only to a battery pack, but also to single cell or multi modules, increasing its range of applications. In simple words, this study proposes an alternative and cost-effective SoH estimation and diagnosis approach for the deteriorated battery, comparing to high-cost industrial devices, focused on the low input data scenario, taking into account the inter-degradation between cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩虹儿应助Hayat采纳,获得50
9秒前
30秒前
30秒前
33秒前
Archers完成签到 ,获得积分10
43秒前
小蘑菇应助科研通管家采纳,获得20
2分钟前
2分钟前
2分钟前
2分钟前
长度2到发布了新的文献求助10
2分钟前
不是山谷完成签到,获得积分10
2分钟前
万能图书馆应助臧晓蕾采纳,获得10
2分钟前
2分钟前
臧晓蕾发布了新的文献求助10
2分钟前
凡事发生必有利于我完成签到,获得积分10
2分钟前
晓晓完成签到,获得积分10
3分钟前
晓晓发布了新的文献求助10
3分钟前
maxiangyu完成签到,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
无极2023完成签到 ,获得积分0
4分钟前
4分钟前
长度2到发布了新的文献求助10
4分钟前
长情半邪完成签到 ,获得积分10
4分钟前
长度2到完成签到,获得积分10
4分钟前
下文献的蜉蝣完成签到 ,获得积分10
4分钟前
maolao发布了新的文献求助10
5分钟前
BA1完成签到 ,获得积分10
5分钟前
悄悄拔尖儿完成签到 ,获得积分10
5分钟前
maolao完成签到,获得积分10
5分钟前
6分钟前
丽晶洁愿完成签到 ,获得积分10
6分钟前
学术小白完成签到,获得积分10
6分钟前
彩虹儿应助药化采纳,获得10
8分钟前
8分钟前
刘一完成签到 ,获得积分10
8分钟前
9分钟前
宝字盖发布了新的文献求助10
9分钟前
小花排草应助鬼见愁采纳,获得20
9分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
探索化学的奥秘:电子结构方法 400
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4172895
求助须知:如何正确求助?哪些是违规求助? 3708426
关于积分的说明 11698005
捐赠科研通 3392883
什么是DOI,文献DOI怎么找? 1861339
邀请新用户注册赠送积分活动 920691
科研通“疑难数据库(出版商)”最低求助积分说明 832833