Bayesian estimation of cell type–specific gene expression with prior derived from single-cell data

生物 计算生物学 电池类型 表达数量性状基因座 基因表达 基因 RNA序列 贝叶斯概率 遗传学 细胞 转录组 计算机科学 人工智能 单核苷酸多态性 基因型
作者
Jiebiao Wang,Kathryn Roeder,Bernie Devlin
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:31 (10): 1807-1818 被引量:42
标识
DOI:10.1101/gr.268722.120
摘要

When assessed over a large number of samples, bulk RNA sequencing provides reliable data for gene expression at the tissue level. Single-cell RNA sequencing (scRNA-seq) deepens those analyses by evaluating gene expression at the cellular level. Both data types lend insights into disease etiology. With current technologies, scRNA-seq data are known to be noisy. Constrained by costs, scRNA-seq data are typically generated from a relatively small number of subjects, which limits their utility for some analyses, such as identification of gene expression quantitative trait loci (eQTLs). To address these issues while maintaining the unique advantages of each data type, we develop a Bayesian method (bMIND) to integrate bulk and scRNA-seq data. With a prior derived from scRNA-seq data, we propose to estimate sample-level cell type–specific (CTS) expression from bulk expression data. The CTS expression enables large-scale sample-level downstream analyses, such as detection of CTS differentially expressed genes (DEGs) and eQTLs. Through simulations, we show that bMIND improves the accuracy of sample-level CTS expression estimates and increases the power to discover CTS DEGs when compared to existing methods. To further our understanding of two complex phenotypes, autism spectrum disorder and Alzheimer's disease, we apply bMIND to gene expression data of relevant brain tissue to identify CTS DEGs. Our results complement findings for CTS DEGs obtained from snRNA-seq studies, replicating certain DEGs in specific cell types while nominating other novel genes for those cell types. Finally, we calculate CTS eQTLs for 11 brain regions by analyzing Genotype-Tissue Expression Project data, creating a new resource for biological insights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
完美世界应助有人喜欢蓝采纳,获得10
1秒前
CZmike完成签到,获得积分20
1秒前
kento发布了新的文献求助30
1秒前
李爱国应助Leffzeng采纳,获得10
2秒前
莫言完成签到,获得积分10
2秒前
ybwei2008_163发布了新的文献求助10
3秒前
meijuan1210发布了新的文献求助20
3秒前
科科发布了新的文献求助10
3秒前
64658应助YueYue采纳,获得10
5秒前
6秒前
7秒前
7秒前
星辰大海应助冲鸭采纳,获得10
7秒前
zhz完成签到,获得积分10
9秒前
IY发布了新的文献求助10
10秒前
10秒前
闪闪谷槐发布了新的文献求助10
12秒前
乐乐应助狂野香氛采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
科目三应助l1563358采纳,获得10
13秒前
14秒前
17秒前
科研通AI5应助racill采纳,获得10
17秒前
灰灰应助shinn采纳,获得10
17秒前
Li完成签到,获得积分10
18秒前
18秒前
玛琪玛小姐的狗完成签到,获得积分10
19秒前
20秒前
汤泽琪发布了新的文献求助10
20秒前
俊逸的续发布了新的文献求助10
21秒前
脑洞疼应助闪闪谷槐采纳,获得10
22秒前
22秒前
朝朝完成签到 ,获得积分10
24秒前
信你个鬼完成签到,获得积分10
25秒前
26秒前
上官若男应助电麻木采纳,获得10
26秒前
26秒前
Jackie完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4647511
求助须知:如何正确求助?哪些是违规求助? 4036911
关于积分的说明 12485894
捐赠科研通 3726211
什么是DOI,文献DOI怎么找? 2056710
邀请新用户注册赠送积分活动 1087615
科研通“疑难数据库(出版商)”最低求助积分说明 969047