Bayesian estimation of cell type–specific gene expression with prior derived from single-cell data

生物 计算生物学 电池类型 表达数量性状基因座 基因表达 基因 RNA序列 贝叶斯概率 遗传学 细胞 转录组 计算机科学 人工智能 单核苷酸多态性 基因型
作者
Jiebiao Wang,Kathryn Roeder,Bernie Devlin
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:31 (10): 1807-1818 被引量:42
标识
DOI:10.1101/gr.268722.120
摘要

When assessed over a large number of samples, bulk RNA sequencing provides reliable data for gene expression at the tissue level. Single-cell RNA sequencing (scRNA-seq) deepens those analyses by evaluating gene expression at the cellular level. Both data types lend insights into disease etiology. With current technologies, scRNA-seq data are known to be noisy. Constrained by costs, scRNA-seq data are typically generated from a relatively small number of subjects, which limits their utility for some analyses, such as identification of gene expression quantitative trait loci (eQTLs). To address these issues while maintaining the unique advantages of each data type, we develop a Bayesian method (bMIND) to integrate bulk and scRNA-seq data. With a prior derived from scRNA-seq data, we propose to estimate sample-level cell type–specific (CTS) expression from bulk expression data. The CTS expression enables large-scale sample-level downstream analyses, such as detection of CTS differentially expressed genes (DEGs) and eQTLs. Through simulations, we show that bMIND improves the accuracy of sample-level CTS expression estimates and increases the power to discover CTS DEGs when compared to existing methods. To further our understanding of two complex phenotypes, autism spectrum disorder and Alzheimer's disease, we apply bMIND to gene expression data of relevant brain tissue to identify CTS DEGs. Our results complement findings for CTS DEGs obtained from snRNA-seq studies, replicating certain DEGs in specific cell types while nominating other novel genes for those cell types. Finally, we calculate CTS eQTLs for 11 brain regions by analyzing Genotype-Tissue Expression Project data, creating a new resource for biological insights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
1秒前
4秒前
juanjua完成签到,获得积分10
5秒前
大大大后悔关注了科研通微信公众号
8秒前
9秒前
9秒前
独特的友琴完成签到 ,获得积分10
9秒前
万能图书馆应助叶成帷采纳,获得10
10秒前
wisdom完成签到,获得积分10
10秒前
昏睡的蟠桃应助酷酷千愁采纳,获得50
11秒前
Owen应助qsdxasc采纳,获得10
12秒前
葱饼完成签到 ,获得积分10
12秒前
renlangfen发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
嗯啊完成签到,获得积分10
16秒前
16秒前
fu完成签到,获得积分10
16秒前
17秒前
17秒前
111完成签到,获得积分10
18秒前
Hello应助正直的念梦采纳,获得10
19秒前
guozizi发布了新的文献求助10
21秒前
童话艺术佳完成签到,获得积分10
22秒前
ooo娜发布了新的文献求助10
22秒前
LIU完成签到,获得积分10
22秒前
李爱国应助完美冰露采纳,获得10
22秒前
23秒前
23秒前
所所应助蓝蓝娜娜采纳,获得10
23秒前
小蘑菇应助manny采纳,获得10
23秒前
初闻完成签到,获得积分10
24秒前
25秒前
电四拟完成签到,获得积分10
25秒前
qsdxasc发布了新的文献求助10
27秒前
雾霭迷茫完成签到,获得积分10
28秒前
科研助手6应助JIyong采纳,获得10
28秒前
28秒前
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814123
求助须知:如何正确求助?哪些是违规求助? 3358369
关于积分的说明 10394045
捐赠科研通 3075673
什么是DOI,文献DOI怎么找? 1689451
邀请新用户注册赠送积分活动 812897
科研通“疑难数据库(出版商)”最低求助积分说明 767404