Strategies to Solve Lithium Battery Thermal Runaway: From Mechanism to Modification

热失控 电池(电) 阳极 材料科学 锂(药物) 电解质 发热 阴极 储能 锂电池 法律工程学 核工程 电气工程 电极 工程类 化学 热力学 功率(物理) 内分泌学 离子 物理化学 有机化学 物理 医学 离子键合
作者
Lingchen Kong,Yu Liu,Wei Feng
出处
期刊:Electrochemical energy reviews [Springer Nature]
卷期号:4 (4): 633-679 被引量:84
标识
DOI:10.1007/s41918-021-00109-3
摘要

As the global energy policy gradually shifts from fossil energy to renewable energy, lithium batteries, as important energy storage devices, have a great advantage over other batteries and have attracted widespread attention. With the increasing energy density of lithium batteries, promotion of their safety is urgent. Thermal runaway is an inevitable safety problem in lithium battery research. Therefore, paying attention to the thermal hazards of lithium battery materials and taking corresponding preventive measures are of great significance. In this review, the heat source and thermal hazards of lithium batteries are discussed with an emphasis on the designs, modifications, and improvements to suppress thermal runaway based on the inherent structure of lithium batteries. According to the source of battery heat, we divide it into reversible heat and irreversible heat. Additionally, superfluous heat generation has profound effects, including thermal runaway, capacity loss, and electrical imbalance. Thereafter, we emphatically discuss the design and modification strategies for various battery components (anodes, cathodes, electrolytes, and separators) to suppress thermal runaway. Preparation of solid electrolyte interphase layers with excellent thermal stability and mechanical properties is the core of the modification strategy for anode materials. Additives, stable coatings, elemental substitution, and thermally responsive coating materials are commonly used to improve the safety of cathodes. Novel electrolyte additives, solid-state electrolytes, and thermally stable separators provide a good opportunity to solve the thermal runaway problem of next-generation high-performance electrochemical storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
吴增丁完成签到,获得积分20
2秒前
3秒前
视野胤发布了新的文献求助10
3秒前
时尚铁身完成签到 ,获得积分10
3秒前
4秒前
ecro发布了新的文献求助10
5秒前
Zita发布了新的文献求助10
6秒前
桜棠发布了新的文献求助10
6秒前
6秒前
Martin完成签到,获得积分10
7秒前
congcong完成签到 ,获得积分10
8秒前
9秒前
mokzhang发布了新的文献求助10
9秒前
lin229完成签到,获得积分10
10秒前
黑路游鸣完成签到,获得积分10
10秒前
ADD发布了新的文献求助10
10秒前
10秒前
christianahui发布了新的文献求助10
10秒前
张泽崇应助停云霭霭采纳,获得10
11秒前
愚妇完成签到,获得积分10
11秒前
13秒前
个性的紫菜应助钮祜禄萱采纳,获得20
13秒前
13秒前
发财总发布了新的文献求助10
13秒前
14秒前
冷月芳华发布了新的文献求助20
14秒前
辛勤南琴完成签到,获得积分10
14秒前
研友_VZG7GZ应助桜棠采纳,获得10
14秒前
乐观的半岛铁完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
16秒前
菜鸟晚安发布了新的文献求助10
16秒前
体贴的愫完成签到,获得积分10
16秒前
舒克完成签到,获得积分10
17秒前
FERN0826发布了新的文献求助10
18秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 400
Statistical Procedures for the Medical Device Industry 400
Workbook for Organic Synthesis: Strategy and Control 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2379141
求助须知:如何正确求助?哪些是违规求助? 2086267
关于积分的说明 5236874
捐赠科研通 1813300
什么是DOI,文献DOI怎么找? 904897
版权声明 558652
科研通“疑难数据库(出版商)”最低求助积分说明 483078