DeepBackground: Metamorphic testing for Deep-Learning-driven image recognition systems accompanied by Background-Relevance

人工智能 相关性(法律) 计算机科学 变质岩 模式识别(心理学) 深度学习 地质学 古生物学 政治学 法学
作者
Zhiyi Zhang,Pu Wang,Hongjing Guo,Ziyuan Wang,Yuqian Zhou,Zhiqiu Huang
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:140: 106701-106701 被引量:27
标识
DOI:10.1016/j.infsof.2021.106701
摘要

Recently, advances in Deep Learning (DL) have promoted the development of DL-driven image recognition systems in various fields, such as medical treatment, face detection, etc., almost achieving the same level of performance as the human brain. Nevertheless, using DL-driven image recognition systems in these safety-critical domains requires ensuring the accuracy and the stability of these systems. Recent research in this direction mainly focuses on using the image transformations for the overall image to detect the inconsistency of image recognition systems. However, the influence of the image background region ( i . e . , the region of the image other than the target object) on the recognition result of the systems and the robustness evaluation of the systems are not considered. To evaluate the robustness of DL-driven image recognition systems about image background region changes, this paper introduces DeepBackground, a novel metamorphic testing method for DL-driven image recognition systems. First, we define a new metric, termed Background-Relevance (BRC) to assess the influence degree of the image background region on the recognition result of the image recognition systems. DeepBackground defines a series of domain-specific metamorphic relations (MRs) combined with BRC and automatically generates many follow-up test images based on these MRs. Finally, DeepBackground detects the inconsistency of these systems and evaluates their robustness about image background changes according to BRC. Our empirical validation on 3 commercial image recognition services and 6 popular convolutional neural networks (CNNs) models shows that DeepBackground can not only evaluate the robustness of these image recognition systems about image background changes according to BRC, but also can detect their inconsistent behaviors. DeepBackground is capable of automatically generating high-quality test input images to detect the inconsistency of the image recognition systems, and evaluating the robustness of these systems about image background changes according to BRC. • This paper proposes a novel metamorphic testing method for Deep-Learning-driven image recognition systems (DeepBackground). • The approach introduces and formulates a new metric: Background-Relevance (BRC), which can assess the robustness of image recognition systems about background changes. • It also can detect the inconsistency of the image recognition systems. • An empirical study on several image recognition systems shows the feasibility and effectiveness of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行7发布了新的文献求助10
3秒前
7秒前
8秒前
陶醉可燕发布了新的文献求助30
8秒前
喏晨完成签到,获得积分10
9秒前
李爱国应助wll采纳,获得10
12秒前
13秒前
noss发布了新的文献求助10
14秒前
超级小狗发布了新的文献求助10
16秒前
大白完成签到 ,获得积分10
16秒前
马骥发布了新的文献求助10
19秒前
小镇的废物完成签到,获得积分10
20秒前
23秒前
25秒前
点墨完成签到 ,获得积分10
28秒前
Erin完成签到,获得积分10
29秒前
29秒前
昀汐发布了新的文献求助10
30秒前
马骥发布了新的文献求助10
32秒前
fang发布了新的文献求助10
33秒前
昀汐完成签到 ,获得积分10
37秒前
明亮的冷雪完成签到,获得积分10
40秒前
45秒前
qqqqqqqqq完成签到 ,获得积分10
48秒前
慕青应助马骥采纳,获得10
48秒前
49秒前
tRNA发布了新的文献求助10
51秒前
章鱼发布了新的文献求助10
52秒前
李健应助wilson采纳,获得10
53秒前
orixero应助专注的糖豆采纳,获得10
53秒前
清茶韵心完成签到,获得积分10
53秒前
wll发布了新的文献求助10
54秒前
阿克江打开电脑应助千春采纳,获得20
56秒前
西瓜完成签到 ,获得积分10
57秒前
废羊羊完成签到 ,获得积分10
1分钟前
超级小狗完成签到,获得积分10
1分钟前
高山流水完成签到,获得积分10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3326986
关于积分的说明 10229195
捐赠科研通 3041927
什么是DOI,文献DOI怎么找? 1669688
邀请新用户注册赠送积分活动 799249
科研通“疑难数据库(出版商)”最低求助积分说明 758757