Object-level change detection with a dual correlation attention-guided detector

计算机科学 变更检测 人工智能 目标检测 跳跃式监视 背景(考古学) 计算机视觉 特征提取 深度学习 模式识别(心理学) 比例(比率) 对象(语法) 特征(语言学) 像素 最小边界框 图像(数学) 地理 哲学 考古 地图学 语言学
作者
Lin Zhang,Xiangyun Hu,Mi Zhang,Zhen Shu,Hao Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:177: 147-160 被引量:68
标识
DOI:10.1016/j.isprsjprs.2021.05.002
摘要

Automatic change detection from remotely sensed imagery is extremely important for many applications, including land use mapping. In recent years, a growing number of researchers have applied capable deep-learning methods to the research on change detection. The majority of deep learning-based change detection methods currently perform pixel-by-pixel classification at the original image scale, but they can hardly avoid the false changes caused by strong parallax effects and projected shadows, without considering the totality of changed objects/regions. In this study, we propose an object-level change detection framework to detect changed geographic entities (such as newly built buildings or changed artificial structures) by paying more attention to the overall characteristics and context association of changed object instances. The detected changed objects are represented as bounding boxes, which are simple, regular, and convenient to use in object feature extraction. In terms of data handling, a special data augmentation method for change detection called Alternative-Mosaic is proposed to effectively accelerate model training and improve model performance. For the model, we propose a one-stage change detection network called dual correlation attention-guided detector (DCA-Det) to detect the changed objects. In particular, we feed the dual-temporal images into a weight-shared backbone network to extract the change features of different scales. The change features on the same scale are further refined, and then the features between different scales are fused by the correlation attention-guided feature fusion neck. Finally, the change detection heads output the prediction results of the changed objects/regions of different scales. Experiments were conducted on public LEVIR building change detection and aerial imagery change detection (AICD) datasets. The quantitative evaluation and visualization results proved the superiority and robustness of our framework. Our DCA-Det can obtain state-of-the-art performance on object-level metrics (99.50% APIoU=.50 and 79.72% APIoU=.50:.05:.95) on the AICD-2012 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝桉发布了新的文献求助10
2秒前
2秒前
Lucas应助宫冷雁采纳,获得10
4秒前
4秒前
4秒前
时尚纸鹤发布了新的文献求助10
6秒前
6秒前
毕业没问题完成签到,获得积分10
6秒前
xyyyy发布了新的文献求助10
7秒前
在水一方应助lian采纳,获得10
7秒前
桐桐应助putao采纳,获得10
7秒前
健壮书包发布了新的文献求助10
8秒前
8秒前
广君完成签到 ,获得积分10
9秒前
李健的小迷弟应助AixGnad采纳,获得10
11秒前
11秒前
知性的真发布了新的文献求助10
12秒前
kaka发布了新的文献求助10
12秒前
靳志强发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
16秒前
17秒前
star发布了新的文献求助10
17秒前
知性的真完成签到,获得积分10
18秒前
18秒前
lizhiqian2024发布了新的文献求助10
18秒前
科研助手6应助kaka采纳,获得10
19秒前
科研通AI5应助kaka采纳,获得10
19秒前
Q哈哈哈发布了新的文献求助10
19秒前
科研通AI5应助广君采纳,获得10
19秒前
充电宝应助小黑采纳,获得10
20秒前
格格巫完成签到,获得积分10
21秒前
机灵的忆梅完成签到 ,获得积分10
21秒前
情怀应助健壮书包采纳,获得10
21秒前
宫冷雁发布了新的文献求助10
22秒前
杨旭靖发布了新的文献求助10
22秒前
yunsww发布了新的文献求助10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790807
求助须知:如何正确求助?哪些是违规求助? 3335722
关于积分的说明 10276182
捐赠科研通 3052250
什么是DOI,文献DOI怎么找? 1675067
邀请新用户注册赠送积分活动 803038
科研通“疑难数据库(出版商)”最低求助积分说明 761020