Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

迭代重建 全变差去噪 正规化(语言学) 迭代法 变化(天文学) 医学影像学 数学 计算机科学 算法 图像(数学) 人工智能 物理 天体物理学
作者
Xue Dong,Tianye Niu,Lei Zhu
出处
期刊:Medical Physics [Wiley]
卷期号:41 (5): 051909-051909 被引量:67
标识
DOI:10.1118/1.4870375
摘要

Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ∼14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟请让一让完成签到,获得积分10
5秒前
YJ完成签到,获得积分10
6秒前
9秒前
xfy完成签到,获得积分10
13秒前
KLED完成签到 ,获得积分10
13秒前
sophia完成签到 ,获得积分10
19秒前
little佳完成签到 ,获得积分10
20秒前
Jessica完成签到,获得积分20
20秒前
21秒前
王小西完成签到 ,获得积分10
22秒前
chen完成签到,获得积分10
24秒前
27秒前
chen发布了新的文献求助10
27秒前
ommphey完成签到 ,获得积分10
27秒前
Neltharion完成签到,获得积分10
30秒前
32秒前
青青完成签到 ,获得积分10
33秒前
LZR发布了新的文献求助10
37秒前
40秒前
沉静的清涟完成签到,获得积分10
42秒前
猪猪女孩完成签到,获得积分10
45秒前
anhuiwsy完成签到 ,获得积分10
48秒前
小怪兽完成签到 ,获得积分10
52秒前
张可发布了新的文献求助10
55秒前
kaier完成签到 ,获得积分10
56秒前
ding应助眯眯眼的朋友采纳,获得10
1分钟前
高高的天亦完成签到 ,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
1分钟前
1分钟前
科研临床两手抓完成签到 ,获得积分10
1分钟前
犹豫的若完成签到,获得积分10
1分钟前
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
dayday完成签到,获得积分10
1分钟前
sunnyqqz完成签到,获得积分10
1分钟前
元神完成签到 ,获得积分10
1分钟前
33完成签到 ,获得积分10
1分钟前
风信子deon01完成签到,获得积分10
1分钟前
1分钟前
Raymond发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402465
捐赠科研通 3077245
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743