数学
班级(哲学)
期限(时间)
粘弹性
数学分析
伽辽金法
边值问题
线性方程
零(语言学)
初值问题
应用数学
线性增长
非线性系统
物理
哲学
人工智能
热力学
量子力学
语言学
计算机科学
摘要
Abstract We consider a class of quasi‐linear evolution equations with non‐linear damping and source terms arising from the models of non‐linear viscoelasticity. By a Galerkin approximation scheme combined with the potential well method we prove that when m < p , where m (⩾0) and p are, respectively, the growth orders of the non‐linear strain terms and the source term, under appropriate conditions, the initial boundary value problem of the above‐mentioned equations admits global weak solutions and the solutions decay to zero as t →∞. Copyright © 2002 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI