A general method applicable to the search for similarities in the amino acid sequence of two proteins

相似性(几何) 氨基酸 计算生物学 同源(生物学) 序列(生物学) 跟踪(心理语言学) 数学 计算机科学 算法 生物 遗传学 人工智能 语言学 图像(数学) 哲学
作者
Saul B. Needleman,Christian D. Wunsch
出处
期刊:Journal of Molecular Biology [Elsevier BV]
卷期号:48 (3): 443-453 被引量:10961
标识
DOI:10.1016/0022-2836(70)90057-4
摘要

A computer adaptable method for finding similarities in the amino acid sequences of two proteins has been developed. From these findings it is possible to determine whether significant homology exists between the proteins. This information is used to trace their possible evolutionary development. The maximum match is a number dependent upon the similarity of the sequences. One of its definitions is the largest number of amino acids of one protein that can be matched with those of a second protein allowing for all possible interruptions in either of the sequences. While the interruptions give rise to a very large number of comparisons, the method efficiently excludes from consideration those comparisons that cannot contribute to the maximum match. Comparisons are made from the smallest unit of significance, a pair of amino acids, one from each protein. All possible pairs are represented by a two-dimensional array, and all possible comparisons are represented by pathways through the array. For this maximum match only certain of the possible pathways must be evaluated. A numerical value, one in this case, is assigned to every cell in the array representing like amino acids. The maximum match is the largest number that would result from summing the cell values of every pathway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兜兜发布了新的文献求助10
1秒前
1秒前
温婉的从凝完成签到,获得积分10
2秒前
Lucas应助todaay采纳,获得10
3秒前
Owen应助孙佳仪采纳,获得10
3秒前
Ava应助健忘的飞雪采纳,获得10
3秒前
夏天发布了新的文献求助10
4秒前
科研通AI5应助尼禄采纳,获得10
4秒前
楚江南完成签到,获得积分10
5秒前
神勇映安发布了新的文献求助10
5秒前
7秒前
7秒前
9秒前
10秒前
sheliachen完成签到,获得积分20
11秒前
12秒前
SciGPT应助zhouleiwang采纳,获得10
12秒前
杪123完成签到,获得积分10
13秒前
小陈完成签到,获得积分10
13秒前
13秒前
滴滴滴发布了新的文献求助30
14秒前
meng发布了新的文献求助10
15秒前
Ava应助稳重书双采纳,获得10
17秒前
平常的忆文完成签到,获得积分10
17秒前
19秒前
19秒前
老迟到的丹雪完成签到 ,获得积分10
21秒前
Try完成签到 ,获得积分10
22秒前
25秒前
25秒前
滴滴滴完成签到,获得积分10
26秒前
whyme完成签到,获得积分10
28秒前
风中的尔曼完成签到,获得积分20
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
99发布了新的文献求助10
29秒前
29秒前
情怀应助科研通管家采纳,获得10
29秒前
Jasper应助科研通管家采纳,获得30
29秒前
无花果应助科研通管家采纳,获得10
29秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Superiority of opioid free anesthesia with regional block over opioid anesthesia with regional block in the quality of recovery after retroperitoneiscopic renal surgery: a randomized controlled trial 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826985
求助须知:如何正确求助?哪些是违规求助? 3369244
关于积分的说明 10455158
捐赠科研通 3088870
什么是DOI,文献DOI怎么找? 1699521
邀请新用户注册赠送积分活动 817361
科研通“疑难数据库(出版商)”最低求助积分说明 770188