Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach

计算机科学 均方误差 人工智能 人工神经网络 模式识别(心理学) 平均绝对误差 相关系数 皮尔逊积矩相关系数 卷积神经网络 特征提取 机器学习 数学 统计
作者
Qiuzhi Song,Xunju Ma,Yali Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107124-107124 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.107124
摘要

Continuous online prediction of human joints angles is a key point to improve the performance of man-machine cooperative control. In this study, a framework of online prediction method of joints angles by long short-term memory (LSTM) neural network only based on surface electromyography (sEMG) signals was proposed. The sEMG signals from eight muscles of five subjects' right leg and three joints angles and plantar pressure signals of subjects were collected simultaneously. Different inputs (only sEMG (unimodal), sEMG combined with plantar pressure (multimodal)) after online feature extraction and standardization were used for training the angle online prediction model by LSTM. The results indicate that there is no significant difference between the two kinds of inputs for LSTM model and the proposed method can make up for the shortage of using a single type of sensor. The range of mean values of root square mean error, mean absolute error and Pearson correlation coefficient of the three joints angles achieved by the proposed model only with the input of sEMG under four kinds of predicted time (50, 100, 150, and 200 ms) are [1.63°,3.20°],[1.27°, 2.36°] and [0.9747, 0.9935]. Three popular machine learning algorithms with different inputs were compared to the proposed model only based on sEMG. Experiment results demonstrate that the proposed method has the best prediction performance and there are highly significant differences between it and other methods. The difference of prediction results under different gait phases by the proposed method was also analyzed. The results indicate that the prediction effect of support phases is generally better than that of swing phases. Above experimental results show that the proposed method can realize accurate online joint angle prediction and has better performance to promote man-machine cooperation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斧王发布了新的文献求助20
1秒前
Zx_1993应助MooN采纳,获得10
1秒前
加菲丰丰举报kreatal求助涉嫌违规
2秒前
顾矜应助学渣采纳,获得10
2秒前
LL完成签到 ,获得积分10
3秒前
3秒前
4秒前
阔达宛凝完成签到,获得积分10
4秒前
浮游应助小连采纳,获得10
5秒前
6秒前
6秒前
yingtiao发布了新的文献求助20
7秒前
古月胡完成签到 ,获得积分10
7秒前
yy完成签到 ,获得积分10
7秒前
染唔唔发布了新的文献求助10
7秒前
hucchongzi应助小白果果采纳,获得10
9秒前
上官若男应助LiuXiaomeng采纳,获得10
9秒前
10秒前
10秒前
邓佳鑫Alan应助波哥采纳,获得10
10秒前
11秒前
牛奶糖完成签到 ,获得积分10
11秒前
12秒前
zimuxinxin发布了新的文献求助10
13秒前
13秒前
完美世界应助殴打阿达采纳,获得10
16秒前
追寻宛海完成签到 ,获得积分20
16秒前
16秒前
学渣发布了新的文献求助10
16秒前
17秒前
17秒前
andrele应助常淼淼采纳,获得10
17秒前
FashionBoy应助常淼淼采纳,获得10
17秒前
clam完成签到,获得积分20
17秒前
17秒前
bkagyin应助小朱马采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
19秒前
19秒前
科目三应助科研通管家采纳,获得10
19秒前
rayx3x应助科研通管家采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417272
求助须知:如何正确求助?哪些是违规求助? 4533229
关于积分的说明 14138892
捐赠科研通 4449254
什么是DOI,文献DOI怎么找? 2440725
邀请新用户注册赠送积分活动 1432507
关于科研通互助平台的介绍 1409898