Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach

计算机科学 均方误差 人工智能 人工神经网络 模式识别(心理学) 平均绝对误差 相关系数 皮尔逊积矩相关系数 卷积神经网络 特征提取 机器学习 数学 统计
作者
Qiuzhi Song,Xunju Ma,Yali Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107124-107124 被引量:32
标识
DOI:10.1016/j.compbiomed.2023.107124
摘要

Continuous online prediction of human joints angles is a key point to improve the performance of man-machine cooperative control. In this study, a framework of online prediction method of joints angles by long short-term memory (LSTM) neural network only based on surface electromyography (sEMG) signals was proposed. The sEMG signals from eight muscles of five subjects' right leg and three joints angles and plantar pressure signals of subjects were collected simultaneously. Different inputs (only sEMG (unimodal), sEMG combined with plantar pressure (multimodal)) after online feature extraction and standardization were used for training the angle online prediction model by LSTM. The results indicate that there is no significant difference between the two kinds of inputs for LSTM model and the proposed method can make up for the shortage of using a single type of sensor. The range of mean values of root square mean error, mean absolute error and Pearson correlation coefficient of the three joints angles achieved by the proposed model only with the input of sEMG under four kinds of predicted time (50, 100, 150, and 200 ms) are [1.63°,3.20°],[1.27°, 2.36°] and [0.9747, 0.9935]. Three popular machine learning algorithms with different inputs were compared to the proposed model only based on sEMG. Experiment results demonstrate that the proposed method has the best prediction performance and there are highly significant differences between it and other methods. The difference of prediction results under different gait phases by the proposed method was also analyzed. The results indicate that the prediction effect of support phases is generally better than that of swing phases. Above experimental results show that the proposed method can realize accurate online joint angle prediction and has better performance to promote man-machine cooperation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qmy完成签到 ,获得积分10
1秒前
岁月如歌完成签到 ,获得积分0
1秒前
2316690509完成签到 ,获得积分10
2秒前
3秒前
项歌完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
听闻韬声依旧完成签到 ,获得积分10
7秒前
Breeze完成签到,获得积分10
9秒前
张小发布了新的文献求助10
9秒前
小柴完成签到,获得积分10
10秒前
zhaochenyu发布了新的文献求助30
11秒前
村上春树的摩的完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
王kk完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
28秒前
量子星尘发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
38秒前
晴天完成签到 ,获得积分10
39秒前
千陽完成签到 ,获得积分10
41秒前
42秒前
43秒前
奇奇怪怪的大鱼完成签到,获得积分10
43秒前
淡然的纹完成签到,获得积分10
46秒前
小新小新完成签到 ,获得积分10
47秒前
诸葛朝雪发布了新的文献求助10
47秒前
CadoreK完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
48秒前
出厂价完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助10
51秒前
Yi完成签到,获得积分10
55秒前
yywang完成签到,获得积分10
55秒前
56秒前
豌豆完成签到 ,获得积分10
58秒前
liliAnh完成签到 ,获得积分10
59秒前
Shaohan完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773368
求助须知:如何正确求助?哪些是违规求助? 5610371
关于积分的说明 15430973
捐赠科研通 4905878
什么是DOI,文献DOI怎么找? 2639904
邀请新用户注册赠送积分活动 1587778
关于科研通互助平台的介绍 1542792