清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predictive Quantitative Read-Across Structure–Property Relationship Modeling of the Retention Time (LogtR) of Pesticide Residues Present in Foods and Vegetables

亲脂性 数量结构-活动关系 偏最小二乘回归 保留时间 分子描述符 化学 相似性(几何) 时间点 适用范围 生物系统 数学 人工智能 色谱法 统计 计算机科学 立体化学 哲学 图像(数学) 美学 生物
作者
Shilpayan Ghosh,Mainak Chatterjee,Kunal Roy
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:71 (24): 9538-9548 被引量:22
标识
DOI:10.1021/acs.jafc.3c01438
摘要

The retention time (log tR) of pesticidal compounds in a reverse-phase high-performance liquid chromatography (HPLC) analysis has a direct relationship with lipophilicity, which could be related to the ecotoxicity potential of the compounds. The novel quantitative read-across structure-property relationship (q-RASPR) modeling approach uses similarity-based descriptors for predictive model generation. These models have been shown to enhance external predictivity in previous studies for several end points. The current study describes the development of a q-RASPR model using experimental retention time data (log tR) in the HPLC experiments of 823 environmentally significant pesticide residues collected from a large compound database. To model the retention time (log tR) end point, 0D-2D descriptors have been used along with the read-across-derived similarity descriptors. The developed partial least squares (PLS) model was rigorously validated by various internal and external validation metrics as recommended by the Organization for Economic Co-operation and Development (OECD). The final q-RASPR model is proven to be a good fit, robust, and externally predictive (ntrain = 618, R2 = 0.82, Q2LOO = 0.81, ntest = 205, and Q2F1 = 0.84) that literally outperforms the external predictivity of the previously reported quantitative structure-property relationship (QSPR) model. From the insights of modeled descriptors, lipophilicity is found to be the most important chemical property, which positively correlates with the retention time (log tR). Various other characteristics, such as the number of multiple bonds (nBM), graph density (GD), etc., have a substantial and inversely proportionate relationship with the retention time end point. The software tools utilized in this study are user-friendly, and most of them are free, which makes our methodology quite cost-effective when compared to experimentation. In a nutshell, to obtain better external predictivity, interpretability, and transferability, q-RASPR is an efficient technique that has the potential to be employed as a good alternative approach for retention time prediction and ecotoxicity potential identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助ma采纳,获得10
6秒前
10秒前
杨志坚完成签到 ,获得积分10
18秒前
热狗完成签到 ,获得积分10
38秒前
53秒前
星辰大海应助葛力采纳,获得10
1分钟前
lilaccalla完成签到 ,获得积分10
2分钟前
2分钟前
ma发布了新的文献求助10
2分钟前
2分钟前
dylanqy发布了新的文献求助30
2分钟前
3分钟前
优雅山柏发布了新的文献求助10
3分钟前
3分钟前
zoe完成签到 ,获得积分10
3分钟前
王_123123123123w完成签到 ,获得积分10
3分钟前
dylanqy完成签到,获得积分10
4分钟前
huangzsdy完成签到,获得积分10
4分钟前
ChiHiRo9Q完成签到,获得积分10
4分钟前
baroque完成签到 ,获得积分10
5分钟前
研友_VZG7GZ应助苔藓采纳,获得10
5分钟前
5分钟前
苔藓发布了新的文献求助10
5分钟前
科研通AI5应助ma采纳,获得10
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
斯文败类应助科研通管家采纳,获得10
6分钟前
ma发布了新的文献求助10
6分钟前
123完成签到 ,获得积分10
6分钟前
慕青应助百里采纳,获得10
6分钟前
冷傲半邪完成签到,获得积分10
6分钟前
6分钟前
6分钟前
葛力发布了新的文献求助10
6分钟前
百里发布了新的文献求助10
6分钟前
方白秋完成签到,获得积分10
7分钟前
科研通AI2S应助葛力采纳,获得10
7分钟前
naczx完成签到,获得积分0
7分钟前
7分钟前
vitamin完成签到 ,获得积分10
7分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526431
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603