Efficient Oxygen Vacancy Defect Engineering for Enhancing Visible-Light Photocatalytic Performance over SnO2−x Ultrafine Nanocrystals

罗丹明B 材料科学 光催化 纳米晶 纳米颗粒 光化学 可见光谱 纳米技术 化学工程 氧气 光电子学 催化作用 化学 有机化学 工程类
作者
Tiekun Jia,Chenxi Sun,Nianfeng Shi,Dongsheng Yu,Fei Long,Ji Hu,Jilin Wang,Binbin Dong,Jili Li,Fang Fu,Shujing Hu,Joong Hee Lee
出处
期刊:Nanomaterials [MDPI AG]
卷期号:12 (19): 3342-3342 被引量:13
标识
DOI:10.3390/nano12193342
摘要

Regardless of its good electron-transfer ability and chemical stability, pure Zn2SnO4 (ZSO) still has intrinsic deficiencies of a narrow spectral response region, poor absorption ability, and high photo-activated carrier recombination rate. Aiming to overcome the deficiencies above-mentioned, we designed a facile hydrothermal route for etching ZSO nanoparticles in a dilute acetic acid solution, through which efficient oxygen vacancy defect engineering was accomplished and SnO2−x nanocrystals were obtained with an ultrafine particle size. In comparison with the untreated ZSO nanoparticles, the specific surface area of SnO2−x nanocrystals was substantially enlarged, subsequently leading to the notable augmentation of active sites for the photo-degradation reaction. Aside from the above, it is worth noting that SnO2−x nanocrystals were endowed with a broad spectral response, enhancing light absorption capacity and the photo-activated carrier transfer rate with the aid of oxygen vacancy defect engineering. Accordingly, SnO2−x nanocrystals exhibited significantly enhanced photoactivity toward the degradation of the organic dye rhodamine B (RhB), which could be imputed to the synergistic effect of increasing active sites, intensified visible-light harvesting, and the separation rate of the photo-activated charge carrier caused by the oxygen vacancy defect engineering. In addition, these findings will inspire us to open up a novel pathway to design and prepare oxide compound photocatalysts modified by oxygen vacancy defects in pursuing excellent visible-light photoactivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷的学姐完成签到,获得积分10
2秒前
2秒前
asdfzxcv应助咚咚采纳,获得10
2秒前
KYT2025完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Demon724发布了新的文献求助10
4秒前
zhuojiu发布了新的文献求助10
4秒前
4秒前
4秒前
海的呼唤完成签到,获得积分10
5秒前
星辰大海应助ww采纳,获得10
5秒前
Lucas应助贺光萌采纳,获得10
6秒前
6秒前
wanci应助阿威采纳,获得10
6秒前
上官老师发布了新的文献求助10
7秒前
标致忆丹完成签到,获得积分10
7秒前
务实大雁发布了新的文献求助10
8秒前
wuyanan513发布了新的文献求助10
8秒前
9秒前
打工人完成签到 ,获得积分10
9秒前
Ava应助hug沅沅采纳,获得10
10秒前
ABC发布了新的文献求助10
10秒前
顾矜应助佩佩采纳,获得10
11秒前
感动问枫完成签到 ,获得积分10
11秒前
韦娜发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
tong完成签到,获得积分10
14秒前
zoe完成签到 ,获得积分10
14秒前
15秒前
moonman发布了新的文献求助10
15秒前
15秒前
今后应助zhenya采纳,获得10
15秒前
15秒前
道心完成签到,获得积分10
16秒前
16秒前
16秒前
浮游应助tong采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798