A Dense ResNet Model with RGB Input Mapping for Cross-Domain Mechanical Fault Diagnosis

RGB颜色模型 人工智能 计算机科学 断层(地质) 深度学习 噪音(视频) 特征提取 特征(语言学) 干扰(通信) 模式识别(心理学) 时域 信号(编程语言) 计算机视觉 机器学习 图像(数学) 频道(广播) 电信 语言学 哲学 地质学 地震学 程序设计语言
作者
Xiaozhuo Xu,Chao Li,Xinliang Zhang,Yunji Zhao
出处
期刊:IEEE Instrumentation & Measurement Magazine [Institute of Electrical and Electronics Engineers]
卷期号:26 (2): 40-47 被引量:4
标识
DOI:10.1109/mim.2023.10083021
摘要

In actual engineering applications, the mechanical machine is exposed to uncertain conditions such as noise interference and various loads. The commonly used fault diagnosis models suffer degradation in the prediction accuracy in such complex industrial environments where the available label samples are insufficient and the conditions are varied. To combat this challenge, a cross-domain mechanical fault diagnosis method based on the deep-learning networks is proposed. It utilizes small samples, i.e., 10% of the total, and operates on the time-series signal collected from the mechanical equipment. It provides a classification accuracy of more than 97% on the dataset from Case Western Reserve University (CWRU) under variable conditions and 97.56% with the noise interference of 0 dB. The one-dimensional vibration signal is first converted into an image through RGB mapping. Then, the derived RGB image is capable of the time dependent and spatial properties of the time sequence signal and can be directly used as the input of the deep-learning networks. The deep-learning networks model, i.e., the ResNet, is adopted for the fault feature extraction and additional dense connections are added among the residual blocks to supplement the insufficient labeled samples within the networks. Then, an RGB-DResNet is constructed, capable of retaining the robust features for the classification of the mechanical faults in different working conditions. Finally, through retraining the model by use of transfer learning, the derived RGB-TDResNet model gives a fine adaption to the feature distribution with a small amount of target domain information. The performance of the proposed fault diagnosis model was validated on the dataset from CWRU. The results show that it provides a high identification accuracy and strong robustness in variable operating conditions as well as the noise environment. It is a rather promising approach for dealing with the cross-domain tasks of mechanical fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助dd采纳,获得20
1秒前
听风发布了新的文献求助10
1秒前
无极微光给快乐再出发的求助进行了留言
2秒前
文献互助发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
万能图书馆应助饶天源采纳,获得10
3秒前
天涯海角发布了新的文献求助10
4秒前
5秒前
FashionBoy应助1526采纳,获得30
6秒前
嘿嘿发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
yyf1998发布了新的文献求助10
8秒前
田様应助赵赵采纳,获得10
9秒前
9秒前
liu完成签到,获得积分10
9秒前
Orange应助11采纳,获得10
11秒前
11秒前
orixero应助听风采纳,获得10
11秒前
沐雨微寒完成签到,获得积分10
12秒前
li发布了新的文献求助30
12秒前
基金中中中完成签到,获得积分10
12秒前
13秒前
FashionBoy应助Yaang采纳,获得10
13秒前
123完成签到,获得积分10
13秒前
Orange应助yunshui采纳,获得10
13秒前
13秒前
哇哈哈发布了新的文献求助10
14秒前
仁爱嫣完成签到,获得积分10
14秒前
一字曰心完成签到,获得积分10
15秒前
亭2007完成签到,获得积分10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
小二郎应助麦海星采纳,获得10
18秒前
田様应助天涯海角采纳,获得10
19秒前
19秒前
1526发布了新的文献求助30
20秒前
Ava应助哇哈哈采纳,获得10
20秒前
heba发布了新的文献求助10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5703154
求助须知:如何正确求助?哪些是违规求助? 5150411
关于积分的说明 15239019
捐赠科研通 4857748
什么是DOI,文献DOI怎么找? 2606607
邀请新用户注册赠送积分活动 1557795
关于科研通互助平台的介绍 1515621