LUIE: Learnable physical model-guided underwater image enhancement with bi-directional unsupervised domain adaptation

水下 计算机科学 人工智能 光辉 基本事实 分割 一般化 计算机视觉 传输(电信) 图像分割 领域(数学分析) 遥感 电信 地质学 数学 数学分析 海洋学
作者
Jingyi Pan,Zeyu Duan,Jianghua Duan,Zhe Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:602: 128286-128286
标识
DOI:10.1016/j.neucom.2024.128286
摘要

Recently, learning-based underwater enhancement (UIE) methods have made considerable progress, significantly benefiting downstream tasks such as underwater semantic segmentation and underwater depth estimation. Most existing unsupervised UIE methods utilize the atmospheric image formation model to decompose underwater images into background color, transmission map, and scene radiance. However, they rely on simplified physical models for estimating the transmission map, over-simplifying its complex formation, which results in imprecise modeling of underwater scattering effects. Additionally, supervised UIE methods heavily depend on synthetic data or ground truth, leading to limited generalization capabilities due to the substantial domain gap presented in different underwater scenarios. To tackle these challenges, we propose a Learnable physical model-guided unsupervised domain adaptation framework for Underwater Image Enhancement, dubbed LUIE. LUIE learns to predict background light, depth, and scene radiance from an underwater image. We incorporate a learnable network to estimate the transmission map based on the predicted depth map. To minimize the inter-domain gap between synthetic and real underwater images, we introduce a bi-directional domain adaptation method that alternates the background light from each domain. Experimental results demonstrate the effectiveness of our proposed method compared to existing approaches, and high-level experiment results validate that our enhanced underwater results. Experiments in real-world settings on underwater ROVs platform with NVIDIA Jetson AGX Xavier further confirm the effectiveness and efficiency of our work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
nana发布了新的文献求助10
1秒前
yc发布了新的文献求助10
1秒前
852应助飞宇采纳,获得10
2秒前
永远明媚完成签到,获得积分10
2秒前
2秒前
研途顺利发布了新的文献求助10
2秒前
Kismet完成签到,获得积分10
3秒前
lulusheng发布了新的文献求助10
3秒前
3秒前
3秒前
alexye619发布了新的文献求助10
4秒前
科研通AI2S应助独特的舞仙采纳,获得10
4秒前
江峰应助晃悠猴采纳,获得10
4秒前
咎穆完成签到,获得积分20
5秒前
迷你的烙完成签到,获得积分10
5秒前
fanny完成签到 ,获得积分10
5秒前
沉默发布了新的文献求助10
5秒前
6秒前
Jinyang完成签到 ,获得积分10
6秒前
roclie完成签到,获得积分10
6秒前
健忘的伟宸完成签到,获得积分10
6秒前
6秒前
科研通AI5应助joruruo采纳,获得10
6秒前
北葵向暖发布了新的文献求助10
6秒前
7秒前
ttyj发布了新的文献求助10
7秒前
minsun完成签到,获得积分10
7秒前
GGbond发布了新的文献求助10
7秒前
7秒前
9秒前
ximei完成签到,获得积分10
9秒前
9秒前
思源应助木目丶采纳,获得10
9秒前
单身的青柏完成签到 ,获得积分10
9秒前
9秒前
pz完成签到,获得积分10
10秒前
云丛发布了新的文献求助10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868