Critically Reckoning Spectrophotometric Detection of Asymptomatic Cyanotoxins and Faecal Contamination in Periurban Agrarian Ecosystems via Convolutional Neural Networks

污染 农业社会 卷积神经网络 无症状的 生态系统 环境科学 人工智能 生物 生态学 计算机科学 医学 内科学 农业
作者
Soumyajit Koley
出处
期刊:Trends in Sciences [College of Graduate Studies, Walailak University]
卷期号:21 (12): 8528-8528 被引量:12
标识
DOI:10.48048/tis.2024.8528
摘要

Based on a systematic review of convolutional neural networks (CNN), this study explores the efficacy of small imaging sensors in monitoring the real-time presence of cyanotoxins and hazardous contaminants in urban ecosystems. To develop a machine learning-based CNN, this study first investigated the relationships between the prevalence of hazardous algal blooms (HABs) and faecal indicator bacteria (FIB) in waterways and aquifers of certain semi-arid zones of Sri Lanka, Sweden and New York (United States). By incorporating a popularly known AbspectroscoPY framework to effectively process the spectrophotometric data of the obtained samples, the formulation subsequently reveals strong positive correlations between FIB coliforms and nutrient loads (particularly nitrate and phosphate). A corroborative association with the incidence of chronic kidney disease of uncertain aetiology (CKDu) among the residents of the studied regions further affirms the reliability of the methodology. These findings underline the need for policymakers to consider the geographical and land-use traits of urban habitats in strategies aimed at reducing water-borne health hazards. HIGHLIGHTS This study examines the link between hazardous algal blooms (HABs) and faecal indicator bacteria (FIB) in the semi-arid habitats of Sri Lanka, Sweden, and New York, USA. Quantitative Phase Imaging based on a convolutional neural network (CNN) model helps monitor cyanobacterial incursions in peri-urban agrarian ecosystems. AbspectroscoPY-enabled spectrophotometric data analysis reveals strong positive correlations between the prevalence of FIB coliforms and nutrient loads, particularly those of nitrates and phosphates. Reliability of proposed machine learning-based CNNs is validated by the corroborative incidences of chronic kidney diseases among residents of the studied regions. GRAPHICAL ABSTRACT
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
刚刚
会飞的猪发布了新的文献求助10
1秒前
3秒前
3秒前
兔子应助猪猪采纳,获得10
3秒前
科研通AI5应助震动的戒指采纳,获得10
3秒前
CipherSage应助文武兼备采纳,获得10
3秒前
4秒前
yusei发布了新的文献求助10
4秒前
小欣发布了新的文献求助10
4秒前
冷傲的冰淇淋完成签到 ,获得积分10
5秒前
5秒前
greenxvatit完成签到,获得积分10
6秒前
goodbuhui发布了新的文献求助10
7秒前
共享精神应助rationality采纳,获得10
7秒前
7秒前
7秒前
8秒前
善学以致用应助落羽采纳,获得10
8秒前
9秒前
情怀应助bzmuzxy采纳,获得10
9秒前
9秒前
10秒前
脑洞疼应助sonia采纳,获得10
11秒前
情怀应助sonia采纳,获得10
11秒前
科研通AI2S应助sonia采纳,获得10
11秒前
爆米花应助sonia采纳,获得10
11秒前
大模型应助sonia采纳,获得30
11秒前
科研通AI5应助sonia采纳,获得30
11秒前
Akim应助sonia采纳,获得10
11秒前
栀子发布了新的文献求助10
11秒前
12秒前
852应助曾阿牛采纳,获得10
12秒前
知鸢发布了新的文献求助10
13秒前
三岁半完成签到 ,获得积分10
13秒前
J-R发布了新的文献求助10
13秒前
李健应助hczx采纳,获得10
13秒前
13秒前
22完成签到,获得积分10
13秒前
JL发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751416
求助须知:如何正确求助?哪些是违规求助? 4096942
关于积分的说明 12675670
捐赠科研通 3809520
什么是DOI,文献DOI怎么找? 2103259
邀请新用户注册赠送积分活动 1128428
关于科研通互助平台的介绍 1005349