3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation

适配器(计算) 适应(眼睛) 分割 人工智能 一般化 计算机科学 图像分割 空间分析 域适应 计算机视觉 模式识别(心理学) 数学 操作系统 数学分析 统计 物理 分类器(UML) 光学
作者
Shizhan Gong,遠藤 忠,Wenao Ma,Jinpeng Li,Zhao Wang,Jingyang Zhang,Pheng‐Ann Heng,Qi Dou
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:98: 103324-103324 被引量:22
标识
DOI:10.1016/j.media.2024.103324
摘要

Despite that the segment anything model (SAM) achieved impressive results on general-purpose semantic segmentation with strong generalization ability on daily images, its demonstrated performance on medical image segmentation is less precise and unstable, especially when dealing with tumor segmentation tasks that involve objects of small sizes, irregular shapes, and low contrast. Notably, the original SAM architecture is designed for 2D natural images and, therefore would not be able to extract the 3D spatial information from volumetric medical data effectively. In this paper, we propose a novel adaptation method for transferring SAM from 2D to 3D for promptable medical image segmentation. Through a holistically designed scheme for architecture modification, we transfer the SAM to support volumetric inputs while retaining the majority of its pre-trained parameters for reuse. The fine-tuning process is conducted in a parameter-efficient manner, wherein most of the pre-trained parameters remain frozen, and only a few lightweight spatial adapters are introduced and tuned. Regardless of the domain gap between natural and medical data and the disparity in the spatial arrangement between 2D and 3D, the transformer trained on natural images can effectively capture the spatial patterns present in volumetric medical images with only lightweight adaptations. We conduct experiments on four open-source tumor segmentation datasets, and with a single click prompt, our model can outperform domain state-of-the-art medical image segmentation models and interactive segmentation models. We also compared our adaptation method with existing popular adapters and observed significant performance improvement on most datasets. Our code and models are available at: https://github.com/med-air/3DSAM-adapter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Mcling发布了新的文献求助10
1秒前
竹竹完成签到,获得积分10
2秒前
2秒前
fanlin发布了新的文献求助10
3秒前
3秒前
3秒前
bc应助DONG采纳,获得40
3秒前
3秒前
像与完成签到,获得积分10
3秒前
Senase发布了新的文献求助10
4秒前
陈开心完成签到,获得积分10
4秒前
Mia应助zy采纳,获得10
4秒前
古月博士发布了新的文献求助10
4秒前
4秒前
畅快芝麻发布了新的文献求助10
5秒前
6秒前
李爱国应助sdl采纳,获得10
6秒前
7秒前
麦哎发布了新的文献求助10
7秒前
Zetlynn完成签到,获得积分10
7秒前
科研通AI5应助xiuxiu_27采纳,获得20
8秒前
8秒前
豆沙卷完成签到,获得积分10
10秒前
一文字豪树完成签到,获得积分10
10秒前
11秒前
11秒前
英俊的铭应助像与采纳,获得10
12秒前
12秒前
古月博士完成签到,获得积分10
13秒前
卡拉蹦蹦发布了新的文献求助10
13秒前
科研小废物完成签到,获得积分20
13秒前
13秒前
克林发布了新的文献求助10
13秒前
LuLan0401发布了新的文献求助10
13秒前
小吕小吕发布了新的文献求助10
13秒前
爱笑凤凰完成签到,获得积分10
14秒前
schuang完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796325
求助须知:如何正确求助?哪些是违规求助? 3341295
关于积分的说明 10306023
捐赠科研通 3057851
什么是DOI,文献DOI怎么找? 1677972
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762775