PRF-Net: A Progressive Remote Sensing Image Registration and Fusion Network

块(置换群论) 图像融合 融合 人工智能 转化(遗传学) 特征(语言学) 图像配准 计算机视觉 计算机科学 人工神经网络 模式识别(心理学) 图像(数学) 数学 基因 哲学 生物化学 语言学 化学 几何学
作者
Zhangxi Xiong,Wei Li,Xiaobin Zhao,Baochang Zhang,Ran Tao,Qian Du
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tnnls.2024.3429156
摘要

Most of the existing fusion algorithms are not robust to unregistered input images. Even after image registration, nonlinear nonregistration may persist in the local areas of the images, leading to poor quality in the fused image. So, as to tackle these challenges, a progressive remote sensing image registration and fusion network is proposed in this article, and named PRF-Net, which is particularly useful when two images are from different platforms. First, a registration network is designed to register the input image patches, which includes a global spatial transform network (GSTN) and a local spatial warp network (LSWN). The GSTN is primarily used for coarse registration, applying rigid transformation to globally align the input images. After coarse registration, the preliminarily registered moving image is input into the LSWN for local fine-tuning to maximize correlation between the input image patches. Subsequently, the fine registered images are degraded and input into the fusion network to generate the fused image. To maintain sufficient spectral and spatial information of the fused image, a multiscale feature extraction (MSFE) block with a highly interpretable spatial details attention (SDA) block is designed, which can enhance the ability of fusion network to extract and preserve spatial details and spectral information. Three groups of experiments conducted on four types of remote sensing images give evidence of that the proposed PRF-Net exhibits excellent performance in both reduced and full resolutions, showcasing its outstanding registration and fusion quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciGPT应助同志同志采纳,获得10
1秒前
1秒前
1秒前
zmnzmnzmn发布了新的文献求助30
1秒前
椰子完成签到,获得积分10
1秒前
明月清风关注了科研通微信公众号
3秒前
3秒前
gkzwww完成签到,获得积分10
5秒前
学术丁真发布了新的文献求助10
5秒前
Evan完成签到 ,获得积分10
5秒前
啊啊啊发布了新的文献求助10
6秒前
爆米花应助dedex采纳,获得10
6秒前
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
飞翔的蒲公英完成签到,获得积分10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
核桃应助科研通管家采纳,获得20
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
典雅问寒应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
白白粥应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Meteor636发布了新的文献求助10
8秒前
浮游应助乒乓采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
酷波er应助欧阳小枫采纳,获得10
9秒前
10秒前
ltutui7发布了新的文献求助10
10秒前
11秒前
11秒前
zx完成签到,获得积分10
11秒前
学术丁真完成签到,获得积分10
11秒前
harrywoo完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407027
求助须知:如何正确求助?哪些是违规求助? 4524685
关于积分的说明 14099897
捐赠科研通 4438552
什么是DOI,文献DOI怎么找? 2436342
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406406