已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Simulated Annealing for Clique Partitioning Problems

模拟退火 计算机科学 自适应模拟退火 迭代局部搜索 数学优化 爬山 水准点(测量) 算法 局部搜索(优化) 退火(玻璃) 迭代函数 数学 材料科学 数学分析 地理 复合材料 大地测量学
作者
Jian Gao,Yiqi Lv,Minghao Liu,Shaowei Cai,Feifei Ma
出处
期刊:Journal of Artificial Intelligence Research [AI Access Foundation]
卷期号:74: 1485-1513 被引量:12
标识
DOI:10.1613/jair.1.13382
摘要

The Clique Partitioning Problem (CPP) is essential in graph theory with a number of important applications. Due to its NP-hardness, efficient algorithms for solving this problem are very crucial for practical purposes, and simulated annealing is proved to be effective in state-of-the-art CPP algorithms. However, to make simulated annealing more efficient to solve large-scale CPPs, in this paper, we propose a new iterated simulated annealing algorithm. Several methods are proposed in our algorithm to improve simulated annealing. First, a new configuration checking strategy based on timestamp is presented and incorporated into simulated annealing to avoid search cycles. Afterwards, to enhance the local search ability of simulated annealing and speed up convergence, we combine our simulated annealing with a descent search method to solve the CPP. This method further improves solutions found by simulated annealing, and thus compensates for the local search effect. To further accelerate the convergence speed, we introduce a shrinking factor to decline initial temperature and then propose an iterated local search algorithm based on simulated annealing. Additionally, a restart strategy is adopted when the search procedure converges. Extensive experiments on benchmark instances of the CPP were carried out, and the results suggest that the proposed simulated annealing algorithm outperforms all the existing heuristic algorithms, including five state-of-the-art algorithms. Thus the best-known solutions for 34 instances out of 94 are updated. We also conduct comparative analyses of the proposed strategies and show their effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
阿康发布了新的文献求助10
2秒前
3秒前
安详的御姐完成签到,获得积分10
3秒前
3秒前
田様应助李李李采纳,获得10
5秒前
月璃发布了新的文献求助10
5秒前
6秒前
6秒前
ljhhjl完成签到 ,获得积分10
7秒前
123发布了新的文献求助10
8秒前
嘻嘻发布了新的文献求助10
8秒前
9秒前
12秒前
13秒前
14秒前
乐乐应助糟糕的铁锤采纳,获得10
14秒前
15秒前
15秒前
科研通AI6应助xyyt采纳,获得10
16秒前
16秒前
17秒前
拉长的人雄完成签到,获得积分10
17秒前
hobowei完成签到 ,获得积分10
19秒前
20秒前
小伙子发布了新的文献求助10
20秒前
汉堡包应助zyl采纳,获得10
20秒前
李李李发布了新的文献求助10
21秒前
Momomo应助乐观的非笑采纳,获得10
22秒前
猫小乐C发布了新的文献求助10
22秒前
23秒前
23秒前
27秒前
科研通AI6应助嘻嘻采纳,获得10
27秒前
29秒前
科研通AI6应助xyyt采纳,获得10
30秒前
王博发布了新的文献求助10
30秒前
31秒前
义气绿柳发布了新的文献求助20
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5676247
求助须知:如何正确求助?哪些是违规求助? 4953263
关于积分的说明 15156876
捐赠科研通 4835630
什么是DOI,文献DOI怎么找? 2590132
邀请新用户注册赠送积分活动 1543908
关于科研通互助平台的介绍 1501530