MBGAN: An improved generative adversarial network with multi-head self-attention and bidirectional RNN for time series imputation

计算机科学 缺少数据 循环神经网络 鉴别器 时间序列 插补(统计学) 人工智能 生成模型 插值(计算机图形学) 多元统计 数据挖掘 原始数据 机器学习 模式识别(心理学) 人工神经网络 生成语法 运动(物理) 探测器 电信 程序设计语言
作者
Qingjian Ni,Xuehan Cao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:115: 105232-105232 被引量:41
标识
DOI:10.1016/j.engappai.2022.105232
摘要

Time series data is of great value in data mining and analysis, but it often comes with the problem of data partly missing in many fields. So it is necessary to impute missing values from raw data to improve accuracy in the analysis of time series. Conventional methods based on interpolation ignore the temporal correlation of data. Recurrent Neural Networks (RNN) are good at capturing temporal relationships, while they have a limitation to obtain the potential correlations in multivariate time series. Based on Generative Adversarial Networks, this paper proposes a new model for time series imputation. The key contributions of the paper are: (i) A feature extraction module is designed to reduce the influence of irrelevant features in raw data. (ii) A bidirectional Gated Recurrent Unit (GRU) module is applied to capture the temporal relationships. A temporal attention mechanism is also designed to help capture important correlations in long sequences which will be neglected by conventional RNN. (iii) A new feature attention based on multi-head self-attention is proposed to extract the potential correlations within multivariate features. (iv) A temporal hint mechanism is added so that the discriminator can perform better in identifying fake data and the generator can learn the distribution of raw data better. The proposed model has been tested on 4 real-world datasets. Two metrics are applied to evaluate the results: Root Mean Square Error and Mean Absolute Error. The results illustrate that our model is superior to the other 10 state-of-the-art methods in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻舟者完成签到,获得积分10
刚刚
arelia发布了新的文献求助30
刚刚
1秒前
兜有米完成签到,获得积分10
2秒前
3秒前
罗氏集团发布了新的文献求助10
4秒前
5秒前
情怀应助赫赫采纳,获得10
5秒前
刻苦的嫣发布了新的文献求助10
6秒前
SciGPT应助cookie采纳,获得10
6秒前
hesven发布了新的文献求助10
7秒前
7秒前
8秒前
英姑应助交钱上班采纳,获得10
8秒前
neinei完成签到,获得积分10
9秒前
Ava应助猪猪hero采纳,获得10
10秒前
真三发布了新的文献求助10
11秒前
12秒前
TaoJ发布了新的文献求助10
12秒前
清爽的绿蝶完成签到,获得积分20
14秒前
15秒前
sangxuet发布了新的文献求助10
16秒前
沈沈发布了新的文献求助10
17秒前
wushuimei完成签到 ,获得积分10
19秒前
19秒前
安静老姆完成签到,获得积分10
21秒前
ding应助刻苦的嫣采纳,获得10
23秒前
25秒前
三点水完成签到,获得积分10
26秒前
27秒前
交钱上班发布了新的文献求助30
27秒前
xuhaohao完成签到 ,获得积分10
28秒前
物外完成签到,获得积分10
28秒前
彭于晏应助33A2D17采纳,获得10
29秒前
29秒前
三点水发布了新的文献求助20
30秒前
小马甲应助学渣采纳,获得10
30秒前
peiqi佩奇完成签到,获得积分10
30秒前
31秒前
梦见乾坤发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810536
求助须知:如何正确求助?哪些是违规求助? 3355025
关于积分的说明 10373819
捐赠科研通 3071528
什么是DOI,文献DOI怎么找? 1687034
邀请新用户注册赠送积分活动 811366
科研通“疑难数据库(出版商)”最低求助积分说明 766619