Prediction of depressive disorder using machine learning approaches: findings from the NHANES

健康信息学 计算机科学 全国健康与营养检查调查 人工智能 机器学习 数据科学 医学 环境卫生 公共卫生 护理部 人口
作者
Thien Vu,Research Dawadi,Masaki Yamamoto,Jordan Tay,Naoki Watanabe,Yuki Kuriya,Asao Ōya,Phap Tran Ngoc Hoang,Michihiro Araki
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:25 (1) 被引量:3
标识
DOI:10.1186/s12911-025-02903-1
摘要

Depressive disorder, particularly major depressive disorder (MDD), significantly impact individuals and society. Traditional analysis methods often suffer from subjectivity and may not capture complex, non-linear relationships between risk factors. Machine learning (ML) offers a data-driven approach to predict and diagnose depression more accurately by analyzing large and complex datasets. This study utilized data from the National Health and Nutrition Examination Survey (NHANES) 2013–2014 to predict depression using six supervised ML models: Logistic Regression, Random Forest, Naive Bayes, Support Vector Machine (SVM), Extreme Gradient Boost (XGBoost), and Light Gradient Boosting Machine (LightGBM). Depression was assessed using the Patient Health Questionnaire (PHQ-9), with a score of 10 or higher indicating moderate to severe depression. The dataset was split into training and testing sets (80% and 20%, respectively), and model performance was evaluated using accuracy, sensitivity, specificity, precision, AUC, and F1 score. SHAP (SHapley Additive exPlanations) values were used to identify the critical risk factors and interpret the contributions of each feature to the prediction. XGBoost was identified as the best-performing model, achieving the highest accuracy, sensitivity, specificity, precision, AUC, and F1 score. SHAP analysis highlighted the most significant predictors of depression: the ratio family income to poverty (PIR), sex, hypertension, serum cotinine and hydroxycotine, BMI, education level, glucose levels, age, marital status, and renal function (eGFR). We developed ML models to predict depression and utilized SHAP for interpretation. This approach identifies key factors associated with depression, encompassing socioeconomic, demographic, and health-related aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮时完成签到 ,获得积分10
1秒前
1秒前
1秒前
ding应助标致曼荷采纳,获得10
1秒前
3秒前
00发布了新的文献求助10
3秒前
张姚发布了新的文献求助10
3秒前
武幻竹发布了新的文献求助10
3秒前
4秒前
赵济尧完成签到,获得积分10
4秒前
星光发布了新的文献求助10
5秒前
5秒前
loop完成签到,获得积分20
5秒前
cxlhzq完成签到,获得积分0
6秒前
FashionBoy应助TIMEIEXIST采纳,获得10
6秒前
6秒前
嘿嘿发布了新的文献求助10
6秒前
6666完成签到,获得积分20
6秒前
Cmax_完成签到,获得积分20
7秒前
7秒前
8秒前
飞猪登场完成签到,获得积分10
8秒前
8秒前
tangyuan发布了新的文献求助10
8秒前
兔兔完成签到,获得积分10
8秒前
星辰大海应助墨酒子采纳,获得10
8秒前
9秒前
niuade发布了新的文献求助30
9秒前
微笑友容完成签到,获得积分10
10秒前
谨慎的白秋完成签到,获得积分10
10秒前
AlleynY完成签到 ,获得积分10
10秒前
卷毛完成签到,获得积分10
11秒前
11秒前
Aicy1111111完成签到,获得积分10
11秒前
芹菜自愿内卷完成签到,获得积分20
11秒前
大模型应助LLY采纳,获得10
11秒前
栗惠发布了新的文献求助20
11秒前
灵性书童完成签到 ,获得积分10
11秒前
锐意发布了新的文献求助10
12秒前
小悦完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879